
DIRAC Resource 
Status System 
(RSS)

Federico Stagni



Overview

● What's the RSS
○ And why would you need it

● Who use it already
● Ontology and architecture
● How to use it



What's the RSS

DIRAC.ResourceStatusSystem

● For storing resource status in DIRAC
○ status information

● An advanced monitoring tool
○ Aggregating dispersed information

● An “autonomic computing” tool
○ The core is a generic policy system
○ Used for monitoring and management
○ Auto ban/un-ban, triggering tests, etc..



Ontology /1

● This RFC defines how the /Resources section of CS should be, and the 
resources ontology at the base of RSS

● Key concepts:
○ Community (VO)
○ Site (access point → locality!)
○ Domain (WLCG, Gisela, EGI...)
○ Resource Type (Computing, Storage, Catalog, FileTransfer, 

Database, CommunityManagement)

/Resources/Sites/[SiteName]/[ResourceType]/[Name Of Service]/[TypeOfAccessPoint]/[NameOf AccessPoint]

/Resources/Domains/[Domain Name]

https://github.com/DIRACGrid/DIRAC/wiki/RFC-%235:-Resources-CS-section-structure




In the RSS

The CS structure is mapped in a 3 level hierarchy, each entry with a status:

→ Sites
→ Resource
→ Nodes



RSS for status information

● DB:
○ ResourceStatusDB: tables for: Status, Log, History

■ Status: 3 families of identical tables: Site, Resource, Node
■ Log: mostly for debugging purposes
■ History: keeps historical changes of status

● Service
○ ResourceStatusHandler (expose ResourceStatusDB)

● Client
○ ResourceStatusClient: for interacting with the ResourceStatusDB
○ ResourceStatus: object that keeps the connectivity with the 

DB/Service – refreshing DictCache of Storage Element status
● Web: Status Summary page (all “resources” combined)



RSS for advanced monitoring

● DB: ResourceManagementDB
● Service: ResourceManagementHandler (mostly exposes the cached 

monitoring information)
● Agents: CacheFeederAgent: populates a cache of (useful, configurable, 

VO-specific) monitoring information
○ e.g.: downtimes, failure rates, external monitoring results …

■ Use “commands”: implementation of the Command pattern → not yet clients!
● Downtimes, accounting, jobs, transfers, space token occupancy...

● Web (cached info are displayed)



RSS for autonomic management 
/1

● A policy system runs the policies: 
PolicyEnforcement/Decision/Information Points

● A policy is an implementation of a logic rule
● A policy uses an (aggregated) monitoring 

information to assess the status of a resource 
(based on the state machine)



RSS for autonomic management 
/2

● Agents
○ ElementInspectorAgent
○ TokenAgent

● And you need the policies:
○ Most of them will be VO-dependent
○ Configurable via CS



Policy System



Complete ontology



Questions/comments

?


