
Future Evolution

Adrià Casajús

University of Ferrara

20150528

Low disruption / Low gain

20140526-…29 CERNDIRAC Workshop 2

Crazy Idea

20150528 Ferrara5th DIRAC User Workshop3

} Seems monitoring systems are popping up
uncontrollably!
} Activity System, System Adm + new monitoring

component, RSS, Belle2 monitoring…

} How about we unify all the monitoring in one
system?
} Gather info, report and act based on it

Microservices
What we are doing

20150528 Ferrara5th DIRAC User Workshop4

} Small independent processes that focus on a task
organized around capabilities

} Easily replaceable and scalable

} More or less what we’re doing
} Service side OK (replaceable and scalable)
} Agent side KO (not scalable)

Microservices

20150528 Ferrara5th DIRAC User Workshop5

} Maybe we’re doing too many
} ~20 DIRAC processes in one of LHCb’s WMS boxes

(2CPU)
} Most are agents

Microservices
What we are lacking

20150528 Ferrara5th DIRAC User Workshop6

} Automation deployment and management
} Improving

} Elasticity
} Deploy when needed and reduce when idle
} Fully automated
} How can this be achieved?

Service discovery, monitoring and
configuration

20150528 Ferrara5th DIRAC User Workshop7

} Currently we’ve got self made tools for this
} CS + Activity System + Dynamic monitoring

} Seems new monitoring tools are popping up all around J

} Plenty of tools have appeared recently
} hashicorp/consul

} Config + discovery + service state

} Etcd, zookeeper
} No service state (can be done home-made)

} Many more (nerve/synapse/smartstack, curator…)
} No single point of failure (no master/slave)

Application Containers (Docker)

20150528 Ferrara5th DIRAC User Workshop8

} Containers are different than VMs
} ~0 overhead
} Think of it as a process jail on steroids (with its own libs,

dirs, config..)

} Can be moved around just like a VM
} Don’t save state unless explicitly done by user

} Allow easy way to run apps/services/jobs
} No dependencies

Application containers
Server side

20150528 Ferrara5th DIRAC User Workshop9

} Ease installation of components
} Could bundle several services/agents in a container?
} Take advantage of container schedulers like

} Kubernetes (Container scheduler)
} Apache Mesos (Container/binary scheduler)
} Mesosphere (OS that schedules containers)
} CoreOS (OS that runs all apps in containers)

} Auto-scaling using container schedulers + Service
discovery/config/health tools

Application containers
Client side

20150528 Ferrara5th DIRAC User Workshop10

} RUN JOBS IN CONTAINERS!

} No user collision

} Jobs are perfectly isolated amongst themselves and
vs the host

} OS/Distro independent
} Containers have all we need to run jobs inside

Single Sign On

20150528 Ferrara5th DIRAC User Workshop11

} We’ve got already SSO in DIRAC. You only log-in
with one credential
} We also have only one system

Multiple authentication mechanisms

20150528 Ferrara5th DIRAC User Workshop12

} Allow users to authenticate to DIRAC via a third
party auth/login service

} Many options:
} Oauth2, Shibboleth, CAS

} Users should run under a generic proxy/certificate
} Generic pilots anyone?
} No glexec (or similar) since users don’t have certificates

} A user can authenticate using more than one source
} Institute credential or google auth or cert or ….

Centralized exception reporting

20150528 Ferrara5th DIRAC User Workshop13

} Whenever an uncatched exception appears we just
log it

} Tools in the market to monitor them
} Sentry, airbrake, exceptional, honeybadger…

} Sentry is open source and available as Saas
} Saas free plan might be enough for us..

} As they say: Shit happens, be on top of it.
} https://getsentry.com

Medium disruption / medium gain

20140526-…29 CERNDIRAC Workshop 14

Message Queues

20150528 Ferrara5th DIRAC User Workshop15

} Async communication between producers and
consumers

} No polling DBs
} Allows varying number of workers

} Replace agents for workers/executors

} Multiple routes
} Msgs to WMS/Optimizers, DMS/Requests, …

} Resilient and horizontally scalable

Message queues

20150528 Ferrara5th DIRAC User Workshop16

} Many options in the market
} RabbitMQ, ActiveMQ, Kafka, kestrel, NBQ,…

} Some of the speak the same protocol, some don’t
} RabbitMQ & ActiveMQ à AMQP and STOMP
} Kafka, kestrel, nbq à custom

} Need to find the one that suits most to us
} Easily maintainable
} Replication & scaling
} Almost zero operation time

} Check out http://queues.io/ for a mind boggling list

Agents à Consumers of events

20150528 Ferrara5th DIRAC User Workshop17

} Instead of polling a DB an Agent should REACT to
events
} Stateless

} Spawn as many consumers as you require
} Dynamically

} TS can react to new files
} Components can react to CS changes
} Requests based on things that happen…

Welcome to NoSQL

20150528 Ferrara5th DIRAC User Workshop18

} Replace MySQL with a NoSQL solution
} J High availability
} J Horizontal scaling
} L No transactions

} We don’t use many in DIRAC anyway

} L Each NoSQL node will be slower than one MySQL
instance
} But you can add more nodes…

} Already went over ElasticSearch for monitoring
} Rebuild monitoring system around it

NoSQL

20150528 Ferrara5th DIRAC User Workshop19

} Plenty of choices
} Cassandra, Riak, MongoDB, Aerospike…

} Plenty of decisions to make
} Which one suits us better?

} In any case we need to think of a replacement for
MySQL
} Oracle is only forced to maintain a GPL version until end

of 2015, after that…
} SQL alternatives: MariaDB, PostgreSQL,…

High disruption / high gain

20140526-…29 CERNDIRAC Workshop 20

Metadata only catalog

20150528 Ferrara5th DIRAC User Workshop21

} Why use paths as metadata?
} /vo/…/../prodid/taskid/…/phaseofmoon/…

} Looots of directories
} Pain to maintain, not scalable
} What if you want to add a need attribute?

} Metadata only catalog
} Object store as SEs (path independent, scalable and fast)

} Get me all the files that have this prod id, with the
latest task, processed yesterday…
} Instead of list of random numbers (aka LFNs)

Graph databases

20150528 Ferrara5th DIRAC User Workshop22

} One possible solution for metadata catalog
} Data generates a connected graph
} Requires investigation

} Find node that relates to this set of nodes (attributes)
} Possibilities

} Neo4j
} FlockDB
} AllegroGraph
} GraphDB
} InfiniteGraph
} …

Sore files in object stores

20150528 Ferrara5th DIRAC User Workshop23

} Distributed, resilient, easy to setup
} Internally replicate data to minimize data loss
} Tipically have an AWS-like API or SWIFT-like API
} Plenty of options

} Swift (OpenStack object store)
} Ceph
} XtreemFS
} Gluster
} MooseFS

Python

20150528 Ferrara5th DIRAC User Workshop24

} Python 2.7 is sunsetting in 2019/2020
} Crisis!
} Panic!
} Zombie apocalypse!
} Repent! The end is nigh!

} Should we start pillaging?

Language

20150528 Ferrara5th DIRAC User Workshop25

} Python may not be the best language for:
} Parallel apps

} Dreaded Global Interpreter Lock. Only one python thread at the
same time

} LHCb has +30 boxes for DIRAC

} Distributed apps
} All the instances require the same python version, modules and

dependencies (externals anyone?)

} Apps bigger than scripts
} Testing python is difficult
} Spaces vs tabs (why??)

myvar = 1
if random.random() > 0.1:

print(myvar + 1)
else:

print(myvab + 2)

Choices:

20150528 Ferrara5th DIRAC User Workshop26

} C/C++
} Require a ninja level knowledge to take advantage of lang
} Not particularly designed for parallel or distributed apps

} Java/Scala
} Same as C/C++. (java6 vs java7 vs java8…)

} Erlang
} Perfect for parallel and distributed apps BUT
} Not imperative. Slow learning curve for devs

Choices (2)

20150528 Ferrara5th DIRAC User Workshop27

} Perl/Ruby/nodejs/…
} Same faults as python

} Rust
} Promising (designed for parallel apps)
} But a bit complex and they just hit 1.0 (need a bit more

stabilization)

} Nim (nimrod)
} Worthy candidate (python devs will like a lot)

} Go
} Hits the mark

Go

20150528 Ferrara5th DIRAC User Workshop28

} Designed by google for building distributed services
} Inherent parallelism embedded in language
} Testing is embedded also into the language
} Compiles into a single static binary (easy

distribution)
} Forget about externals

} Easy to learn

Go

20150528 Ferrara5th DIRAC User Workshop29

} Big community à Lots of stuff already there
} No coding conventions required (go fmt …)

} No spaces/tabs problem

} Can be run on the fly
} http://play.golang.org/

} Many companies are leaving their scripting language
and migrating to Go/Erlang/Scala…
} Dropbox used to use python, migrated to Go, got a

reduction of 70% in their number of hosts

