

# Electro-thermal Analysis of quench in High Field HTS coils

Marco Breschi, Lorenzo Cavallucci, Pier Lugi Ribani, Hubertus Weijers, Andy Gavrilin



# Outline

- NHMFL prototype coil: configuration and quench test
- Magnetic flux density analysis
- 2D COMSOL model
- Results
- Model development
- Conslusion

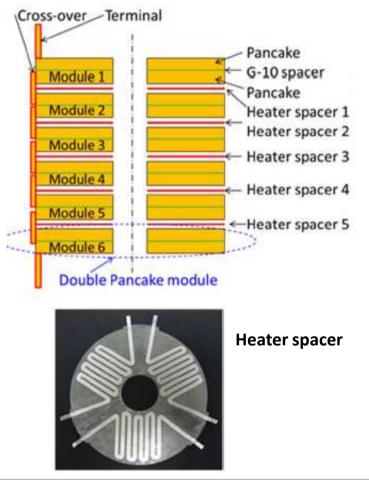


# NHMFL Prototype Coil: Configuration [1]

• Six double pancake modules (each with 244 YBCO turns) were stacked on a bore tube alterned with tree heater spacers.

Inner radius = 20 mm Outer radius = 70 mm

- Dry-wound double pancake coil modules with uninsulated conductor and **insulated stainless steel cowind**.
- The cowind serves both as turn to turn insulation and reinforcement. It is insulated by a 2-3 μm alumina layer.
- Electrical stand-off between the two pancakes of a module is provided by a thin **G-10 sheet** sandwiching the quench heater elements.

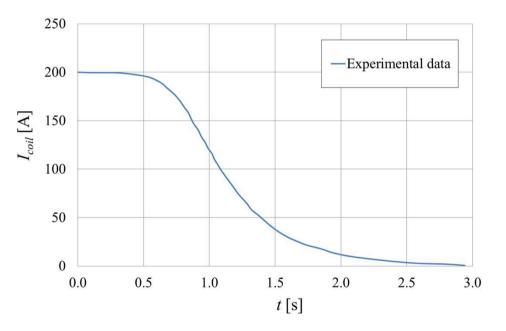


[1] H. W. Weijers *et al.*, "Progress in the development of a superconducting 32 T magnet with REBCO high field coils," *IEEE Trans. Appl. Supercond.*, vol. 24, no. 3, Jun. 2014, Art. ID. 4301805.



# NHMFL Prototype Coil: Quench test

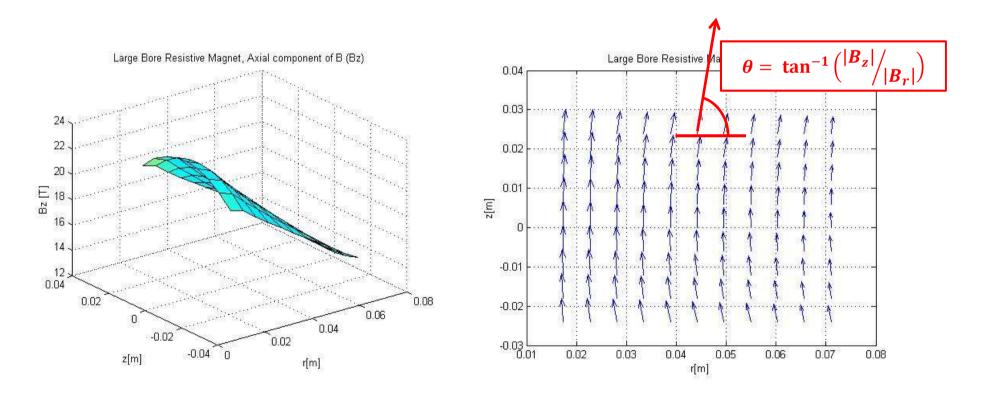
- The test was performed at 4.2 K in self-field and in a background magnetic field of 15 T.
- The prototype coil was initially powered by a 200 A constant current
- Two out of three heaters of each module were energized simultaneously for **0.8 s**. The coil was discharged across the normal zones without energy extraction.





# Magnetic flux density analysis: Prototype coil

External and self magnetic flux density on prototype coil

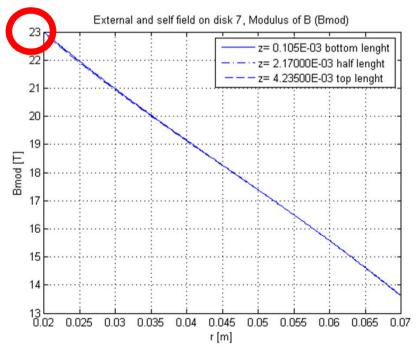


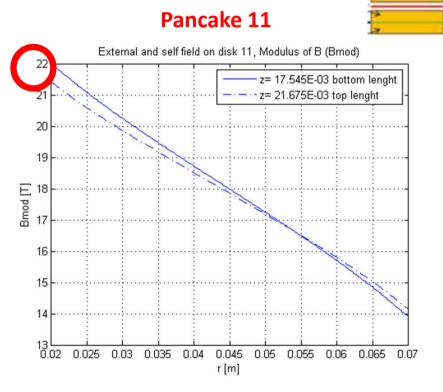


## Magnetic flux density analysis: Pancake 7 vs Pancake 11

Magnetic flux density modulus comparison between pancake 7 and 11

Pancake 7





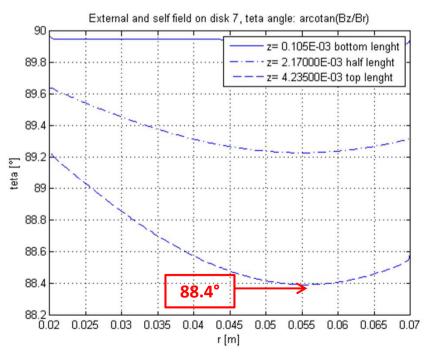
11

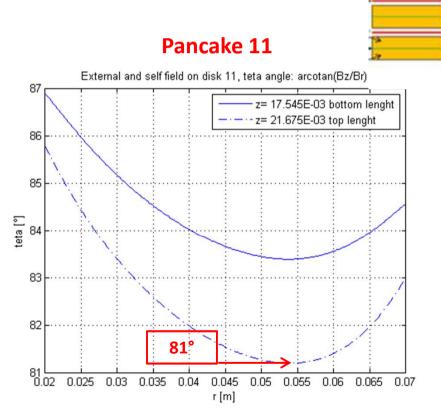


## Magnetic flux density analysis: Pancake **7** vs Pancake **11**

**Teta angle** comparison between pancake 7 and 11

#### Pancake 7



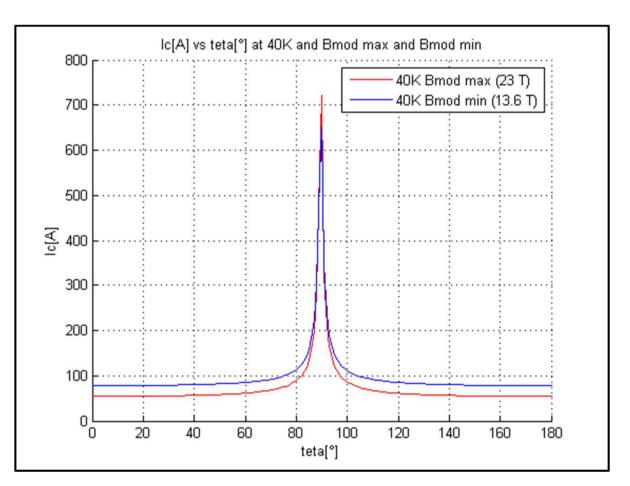


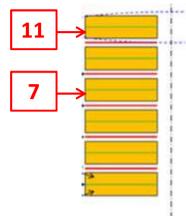
\*\*\*\*\*\*\*\*\*\*\*\*

11



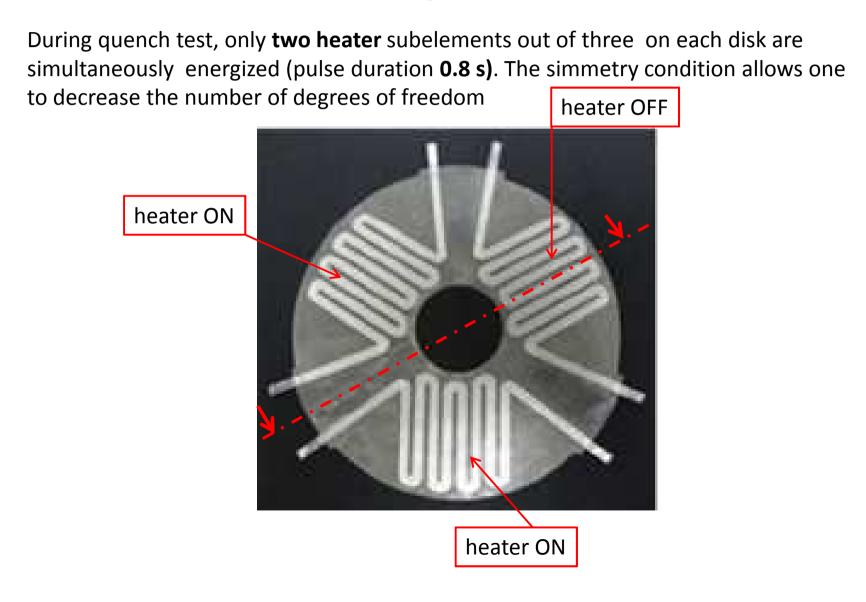
## Magnetic flux density analysis: Pancake **7** vs Pancake **11**







# 2D FEM Model Simmetry condition





# 2D FEM Model Equation

Heat Balance Equation

$$\rho \cdot C_p \frac{dT}{dt} - \nabla \cdot (k(T)\nabla T) = Q_{joule}$$
$$Q_{joule} = \sigma(T, |\mathbf{B}|, |\mathbf{E}|)\nabla V \cdot \nabla V$$

#### **Current Density Continuity Condition**

The slowly varying time-derivative term of the magnetic potential  $\frac{\partial A}{\partial t}$  is ignored [2]

 $\nabla\cdot J=0$ 

$$\nabla \cdot (-\sigma(T, |\boldsymbol{B}|, |\boldsymbol{E}|)\nabla V) = 0$$

**Magnetic Flux Density components** 

$$B_r = b_r(x, y, z) \cdot i + Br^{ext}$$
$$B_z = b_z(x, y, z) \cdot i + Bz^{ext}$$

#### **Coil Constitutive Law**

$$V_{term} = R_{joint}i + R_{NZ}i + L\frac{di}{dt}$$

where

L = 0.44 [H] prototype coil inductance

$$V_{joint} = R_{joint} \cdot i(t = 0s)$$

 $R_{NZ}$  integration of local Joule loss.

$$R_{NZ}i^2 = \mathbf{12} \cdot \mathbf{2} \cdot \int_V \vec{E} \cdot \vec{J} dV$$

Assumption: the whole prototype coil resistance is obtained by multiplying the resistance of pancake 11 by a factor 12.

**[2]** W. K. Chan, J. Schwartz, "A Hierarchical Three-Dimensional Multiscale Electro-Magnetic-Thermal Model of Quenching in REBa<sub>3</sub>Cu<sub>3</sub>O<sub>7-δ</sub> Coated-Conductor-Based Coils," *IEEE Trans. Appl. Supercond.*, vol. 22, no. 5, Oct. 2012.



# 2D FEM Model YBCO tape homogenization

• Longitudinal electrical conductivity  $\sigma^L$ 

If coil current flows along the tape, the tape layers are assumed in parallel.

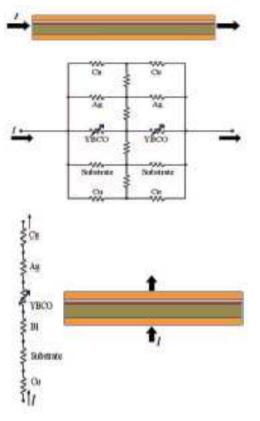
$$\sigma_{L}\left[S/m\right] = \frac{d_{Cu}}{d_{tot}} \cdot \sigma_{Cu} + \frac{d_{Ag}}{d_{tot}} \cdot \sigma_{Ag} + \frac{d_{Sub}}{d_{tot}} \cdot \sigma_{Sub} + \frac{d_{YBCO}}{d_{tot}} \cdot \sigma_{YBCO}$$

• Transversal electrical conductivity  $\sigma^T$ 

If coil current is longitudinal to the tape, the tape layers are in series.

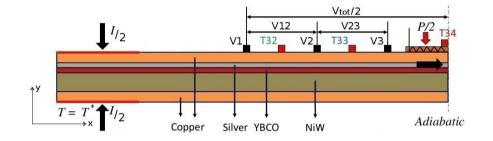
$$\sigma_T[S/m] = \frac{d_{tot}}{d_{Cu}/\sigma_{Cu}} + \frac{d_{tot}}{d_{Ag}/\sigma_{Ag}} + \frac{d_{tot}}{d_{Sub}/\sigma_{Sub}} + \frac{d_{tot}}{d_{YBCO}/\sigma_{YBCO}}$$

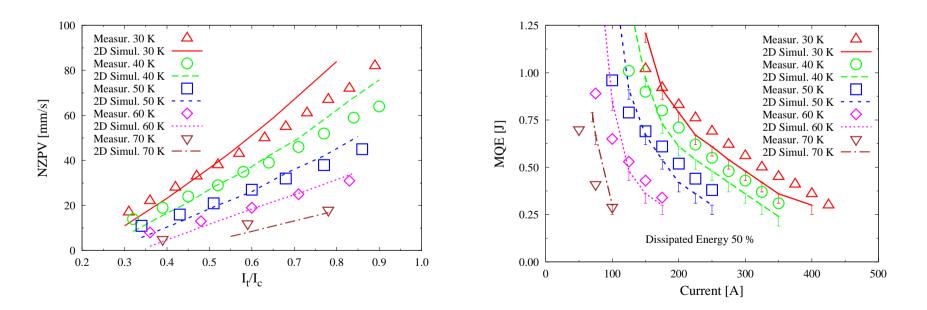
• Longitudinal and transversal thermal conductivity  $k_L$ ,  $k_t$ If heat flux is longitudinal or transversal, equivalent homogenization technique is applied for longitudinal  $k_L$  and transversal  $k_T$  thermal conducibilility.



# 2D FEM Model Tape model validation

 The tape model was previously validated versus experimental results on a HTS tape manufactured by AMSC [3]





[3] M. Casali, M. Breschi, P. L. Ribani, "Two-Dimensional anisotropic model YBCO coated conductors," *IEEE Trans. Appl. Supercond.*, vol. 25, no. 1, Feb. 2015.



# 2D FEM Model Critical current fit function

• In homogenization tecnique, **YBCO electrical conductivity**  $\sigma_{YBCO}$  is evaluated by power law

$$\sigma_{YBCO} = \left(\frac{J_c}{J}\right)^n \frac{J}{E_c}$$

• Critical current density  $J_c$  is calculated by critial current parametrization  $I_c(B, \theta, T)$  [4]

$$I_{c}(B,\theta) = \frac{b_{0}}{(B+\beta_{0})^{\alpha_{0}}} + \frac{b_{1}}{(B+\beta_{1})^{\alpha_{1}}} \left[\omega^{2}(B) \cdot \cos^{2}(\theta - \varphi_{1}) + \sin^{2}(\theta - \varphi_{1})\right]^{-1/2}$$

where

$$\omega_1(B) = c_1 \left[ B + \left( \frac{1}{c_1} \right)^{1/\varepsilon_1} \right]^{\varepsilon_1}$$

coefficients  $b_0$ ,  $b_1$ ,  $\alpha_0$ ,  $\alpha_1$ ,  $\beta_0$ ,  $\beta_1$ ,  $\varphi_1$  are temperature dependent.

[4] D. K. Hilton, A. V. Gavrilin, U. P. Trociewitz, "Practical fit function for transport critical current versus field magnitude and angle data from (RE)BCO coated conductors at fixed low temperature and in high magnetic fields," *Supercond. Sci. Technol. 28 (2015) 074002 (9pp)* 

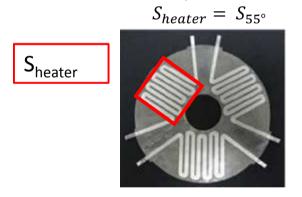


## **Boundary condition - Temperature**

$$\rho \cdot C_p \frac{dT}{dt} - \nabla \cdot (k(T) \nabla T) = Q_{joule}$$

#### • Heater Area

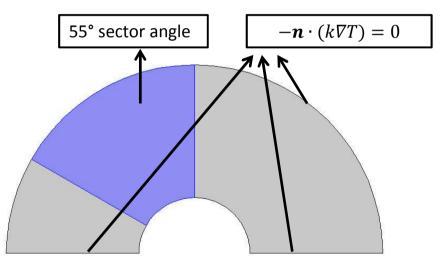
The area of a 55° sector angle is equal to heater area (as rectangle). Then **correction parameter** to take in accaunt real heater shape



#### Heater Power

In a 2D model the surperficial heater power  $[W/m^2]$  has to be modelled as a volumetric power density  $[W/m^3]$ . To reach the same temperature as in the real case a **correction parameter** is introduced.

#### correction parameter = 2.3



Initial condition: T (t = 0 s) = 4.2 K

$$P_{Vol.}\left[\frac{W}{m^3}\right] = 2.3 \frac{P_{heater}(t)[W]}{coil \ height \ [m] \cdot S_{60^\circ} \ [m^2]}$$



## **Boundary condition-Voltage-Current**

 $\nabla \cdot (-\sigma(T, |B|, |E|)\nabla V) = \mathbf{0}$ 

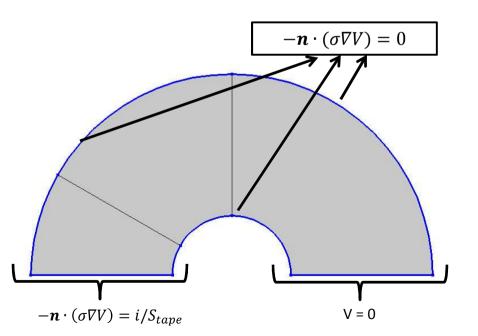
- Voltage, initial condition V (t = 0s) = 0 V
- Zero current density flux on external surfaces

 $-\boldsymbol{n}\cdot(\sigma\nabla V)=0$ 

- Inlet current density equal to single tape current density  $-\mathbf{n} \cdot (\sigma \nabla V) = \frac{i}{S_{tape}}$
- **Dirichlet** Boundary Condition V = 0 V

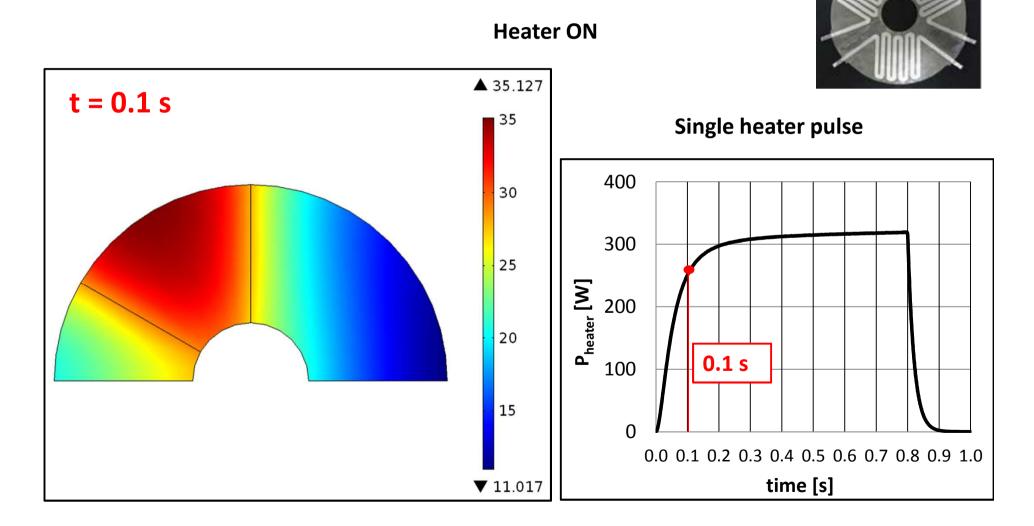
$$V_{sc} + V_{joint} = R_{joint}i + R_{sc}i + L\frac{di}{dt}$$

• Current, initial condition i (t = 0s) = 200 A



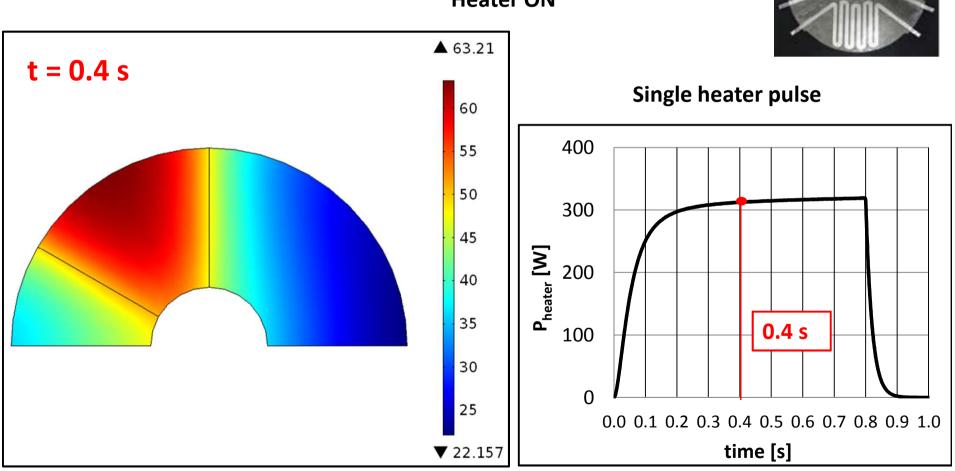


### **Temperature evolution**





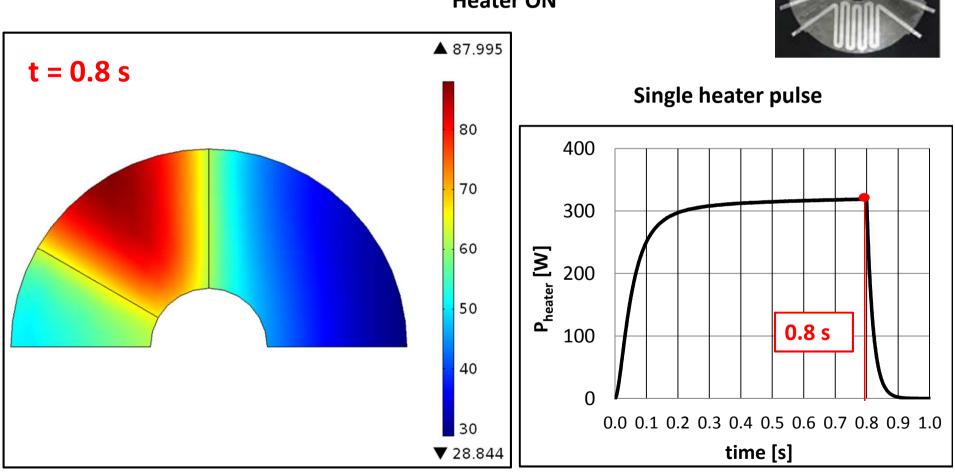
#### **Temperature evolution**



**Heater ON** 



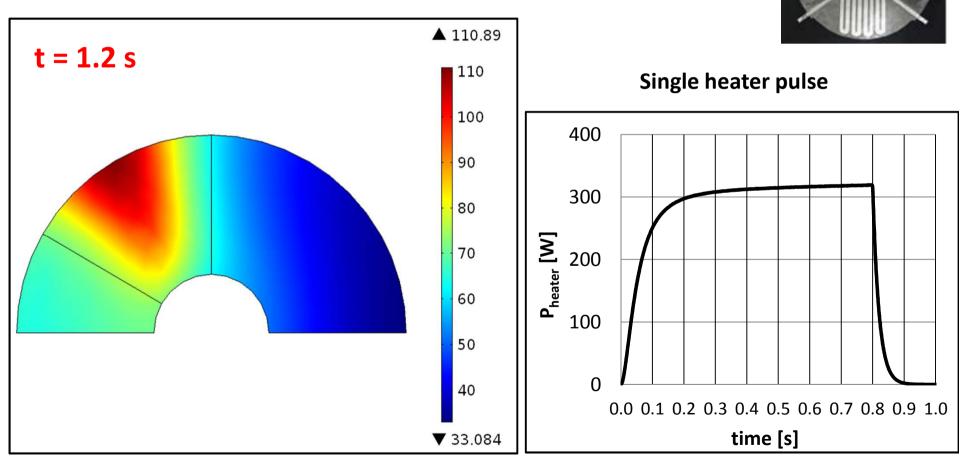
#### **Temperature evolution**



**Heater ON** 



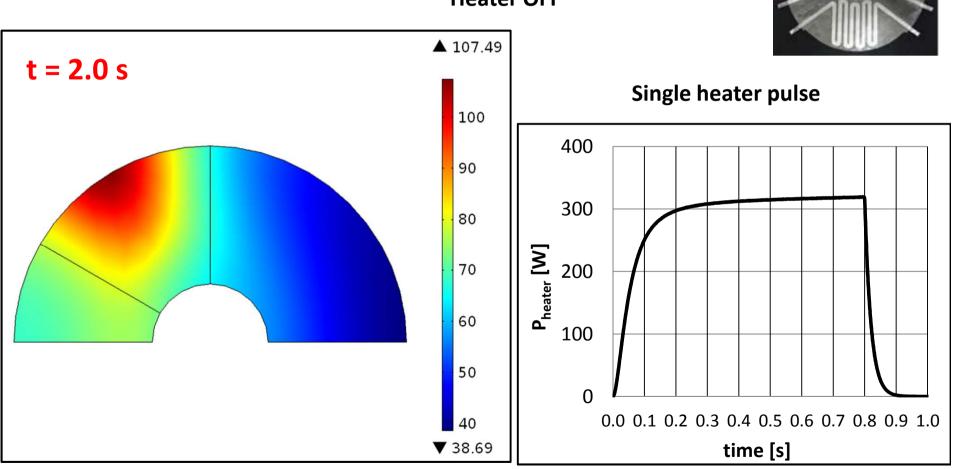
### **Temperature evolution**



Heater OFF



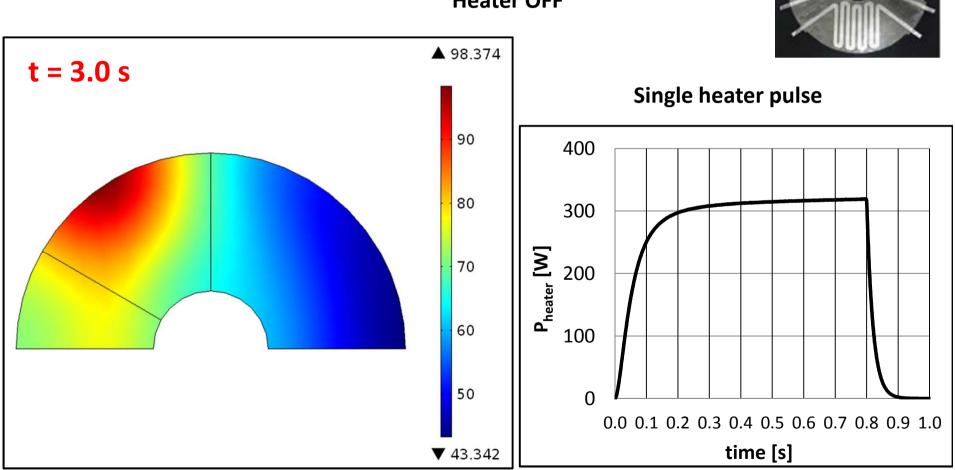
### **Temperature evolution**



Heater OFF



### **Temperature evolution**

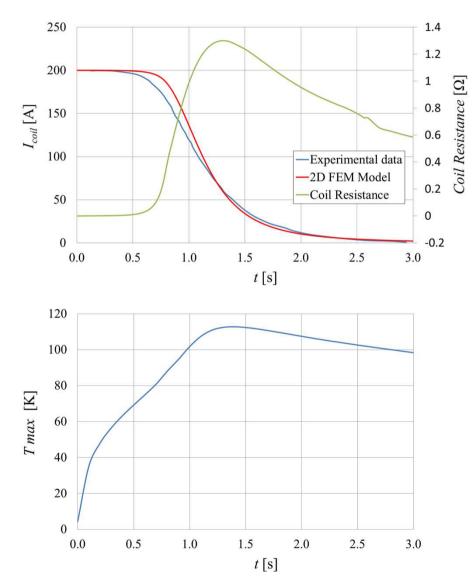


**Heater OFF** 



# Comparison between the 2D model and the experimental data: coil current evolution

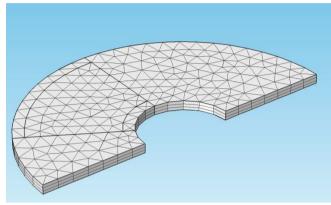
- The coil current damping due to the increasing resistance of the normal zone can be represented by the 2D model
- The normal zone propagation increases the coil resistance
- The reduction of the coil resistance is due to the decreasing temperature related to the current decay.

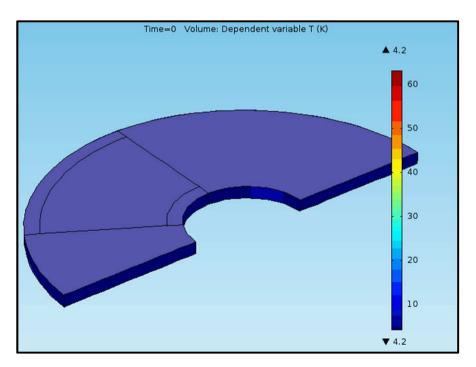




# Model development 3D Model

- In order to improve the analysis of the quench propagation, a 3D model is under development.
- A heat disturbance is applied with a uniform flux density to the upper surface in the heater region.
- Adiabatic condition are imposed on the lower pancake surface.
- Long computational time (at the moment)







# Conclusion

- A 2D model of quench propagation in coated conductors has been developed
- The model describes one pancake of the coil by means of a homogenized anisotropic material
- The main features of the experimental results can be reproduced but further investigations are required to reach a quantitative agreement
- A 3D model of the pancake is under development

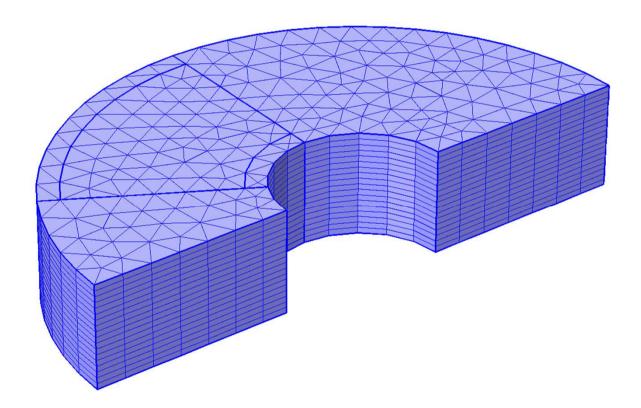


#### The End



# Model development 3D Model

#### Assumption 12





# 2D FEM Model Equation

Heat Balance Equation

$$\rho \cdot C_p \frac{dT}{dt} - \nabla \cdot (k(T)\nabla T) = Q_{joule}$$
$$Q_{joule} = \sigma(T, |\mathbf{B}|, |\mathbf{E}|)\nabla V \cdot \nabla V$$

#### **Current Density Continuity Condition**

The slowly varying time-derivative term of the magnetic potential  $\frac{\partial A}{\partial t}$  is ignored [2]

 $\nabla\cdot J=0$ 

$$\nabla \cdot (-\sigma(T, |\boldsymbol{B}|, |\boldsymbol{E}|)\nabla V) = 0$$

**Magnetic Flux Density components** 

$$B_r = b_r(x, y, z) \cdot i + Br^{ext}$$
$$B_z = b_z(x, y, z) \cdot i + Bz^{ext}$$

#### **Coil Constitutive Law**

$$V_{sc} + V_{joint} = R_{joint}i + R_{NZ}i + L\frac{di}{dt}$$

where

$$L = 0.44 [H]$$
  

$$V_{joint} = R_{joint} \cdot i(t = 0s)$$
  
= 8.06 [\mu\Omega] \cdot 200 [A]

 $V_{sc} = 10^{-100}$  [V]

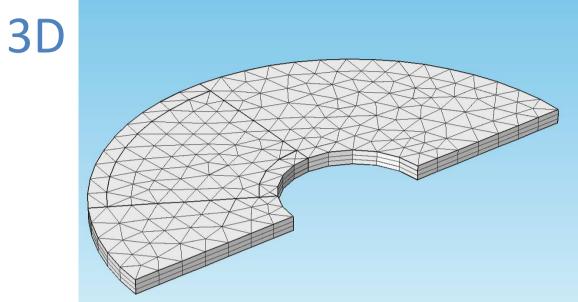
 $R_{NZ}$  evaluated by *joule power* relation.

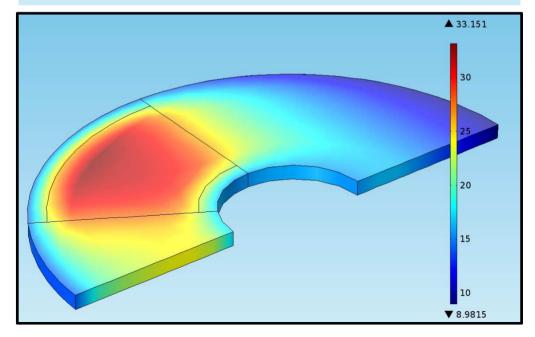
Assumption: the prototype coil is supposed as composed by pankace 11, then multiplication factor 12 is introduced

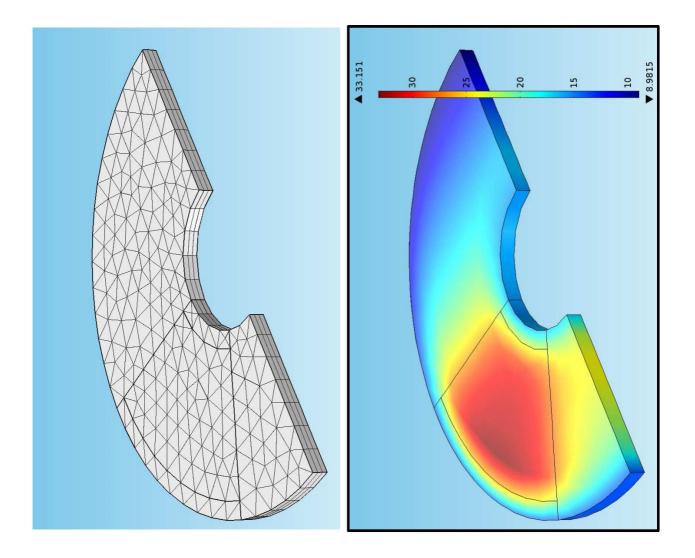
$$R_{NZ}i^2 = \mathbf{12} \cdot 2 \cdot \int \vec{E} \cdot \vec{J} dV$$

[2] W. K. Chan, J. Schwartz, "A Hierarchical Three-Dimensional Multiscale Electro-Magnetic Thermal Model of Quenching in REBa<sub>3</sub>Cu<sub>3</sub>O<sub>7-δ</sub> Coated-Conductor-Based Coils," *IEEE Trans. Appl. Supercond.*, vol. 22, no. 5, Oct. 2012.

# Future development

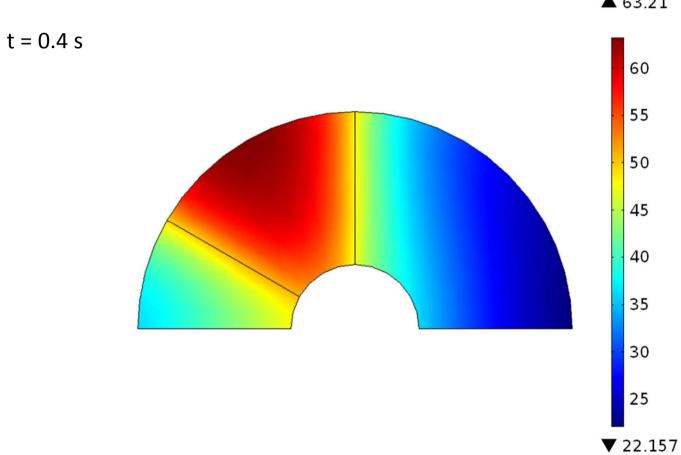








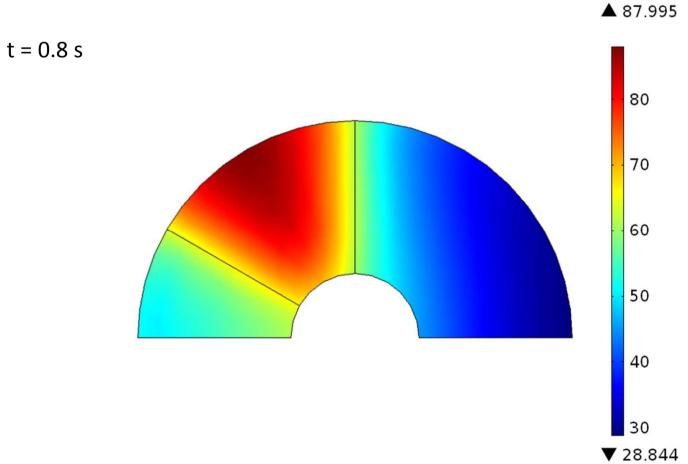
# **2D FEM Model Temperature evolution**



▲ 63.21



# **2D FEM Model Temperature evolution**





# 2D FEM Model Boundary condition - Temperature

$$\rho \cdot C_p \frac{dT}{dt} - \nabla \cdot (k(T)\nabla T) = Q_{joule}$$

• Initial condition

T(t = 0 s) = 4.2 K

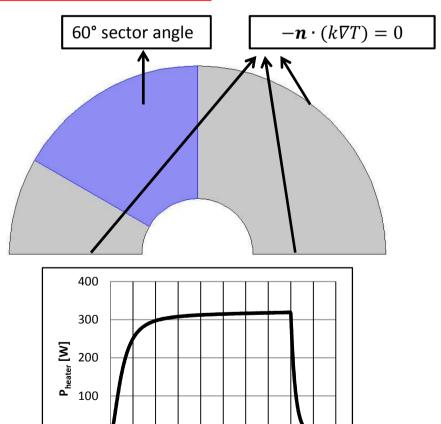
Adiabatic condition on all external surfaces

 $-\boldsymbol{n}\cdot(k\nabla T)=0$ 

• Heater heat flux on a 60° sector angle area. In a 2D model the surperficial heater power  $[W/m^2]$  has to be modelled as a volumetric power density  $[W/m^3]$ . The same power is introduced in a lerger volume then, to reach the same temperature as in the real case a fitting parameter is introduced.

$$P_{Vol.}\left[\frac{W}{m^3}\right] = 2.5 \frac{P_{heater}(t)[W]}{coil \ height \ [m] \cdot S_{60^\circ} \ [m^2]}$$

#### fitting parameter = 2.5



0.8

1.0

0.6

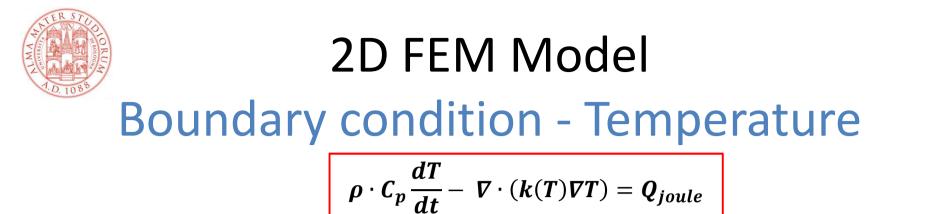
0

0.0

0.2

0.4

time [s]

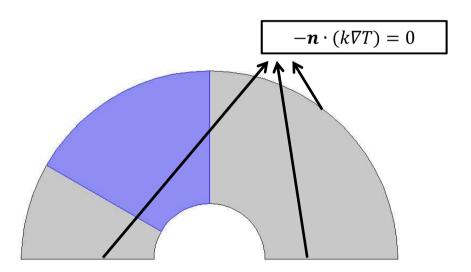


• Initial condition

T(t = 0 s) = 4.2 K

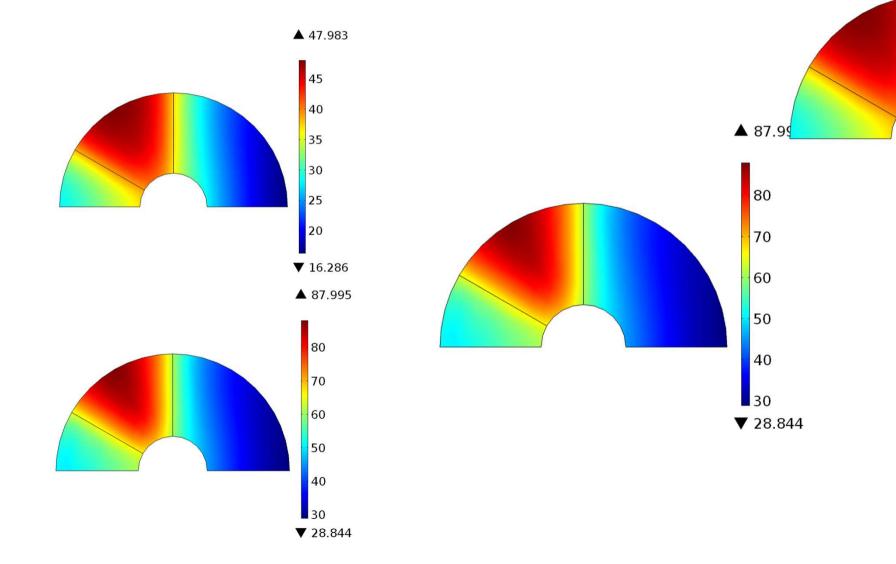
• Adiabatic condition on all external surfaces

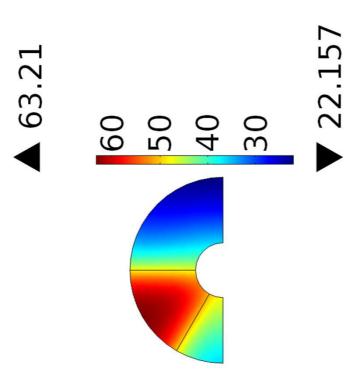
 $-\boldsymbol{n}\cdot(k\nabla T)=0$ 

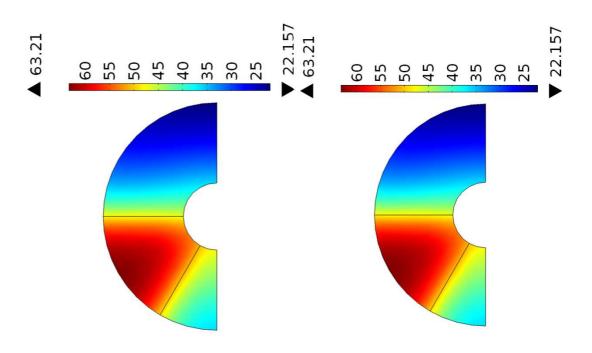




## **Temperature evolution**

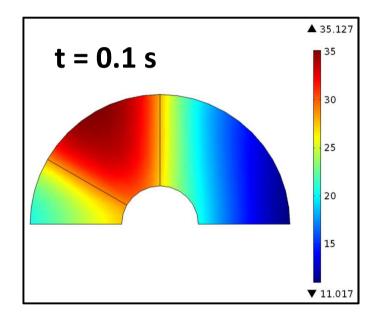


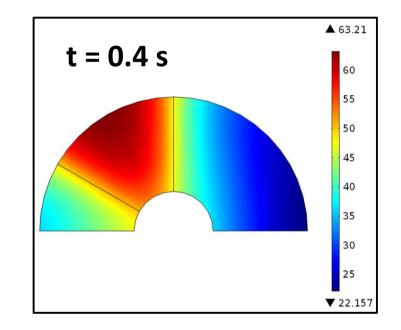






### **Temperature evolution**

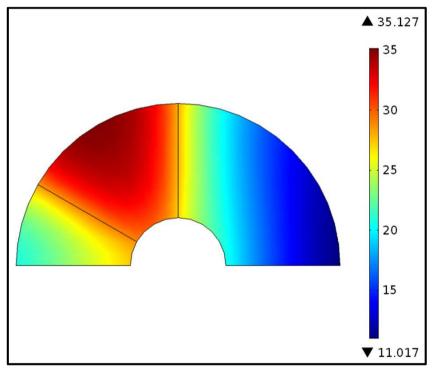




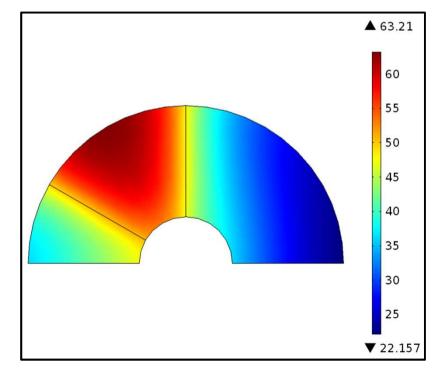


### **Temperature evolution**

t = 0.1 s



t = 0.4 s





# Magnetic flux density evolution during coil current damping

Coil current damping effect on magnetic flux density and teta angle

