

Open-source FEA software in applied superconductivity

- "Free software" means software that respects users' freedom and community... the users have the freedom to run, copy, distribute, study, change and improve the software (source: GNU project)
- Open-source software (OSS) is computer software with its source code made available with a license in which the copyright holder provides the rights to study, change, and distribute the software to anyone and for any purpose. (source: Wikipedia)

Acknowlegments

- Some of the examples were provided by:
 - Ana Neri from MISTI program (Massachusetts Institute of Technology) - GetFem++
 - Edgar Berrospe Juaréz from the Posgrado en Ingeniería (National Autonomous University of Mexico) and Dr. Víctor Manuel Rodriguez Zermeño from Karlsruhe Institute of Technology - COMSOL Multiphysics®

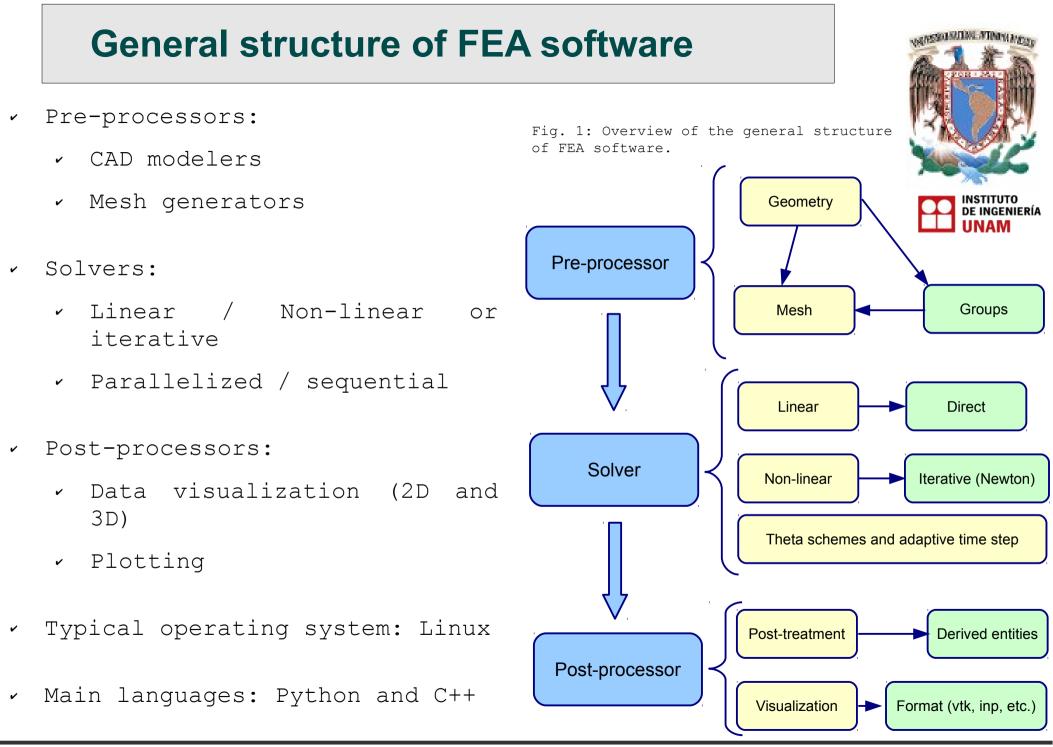
Contents

- Introduction
- Quick overview
- General structure of FEA software
- FEA software used in ASC
- CAD, mesher and viewers
- Some examples
- Recommendations
- References

~

Introduction

- Within the past 10 to 15 years, the number of free codes and software have largely increased following the Internet boom.
- The tendency is to facilitate the user experience. Nevertheless, a certain level of coding skills is still required.
- Python is vastly used to interface underlying libraries often written in C++.
 - The following slides will present a few free FEA software for which the speaker has some level of experience from the perspective of the end user, not the developer. Beware! it is not a thorough list of all available software.



Quick overview

- Geometry and mesh generators: Salome platform, FreeCAD, Gmsh
- FEA Software:
 - Mechanics: Code_ASTER, Cast3M
 - Fluid mechanics: Code_SATURNE, openFOAM
 - Heat transfer (conduction, radiation): SYRTHES
 - Electromagnetism: FEMM, GetDP
 - Multi-physics: Cast3M, GetDP, FreeFem++, GetFem++, CSC-Elmer
- Visualization: Paraview, opendx, Gmsh, Salome
- Plotting tools: gnuplot, Grace, matplotlib/python
- Some libraries:
 - Numerical: MUMPS, PETSC, blas, lapack, gsl
 - $\boldsymbol{\, \boldsymbol{\nu} \,}$ Geometry and CAD: opencascade
 - Meshing: netgen, tetgen
 - General: scipy, numpy, open MPI, GNU Octave

FEA software

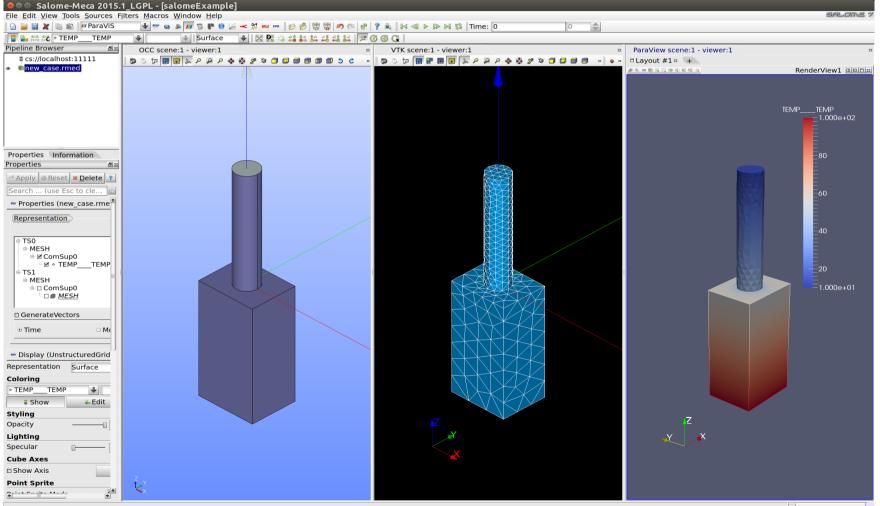
Reference: COMSOL (ease = 10) and C++ (ease = 0)

								CTR6X	POR - MAL MININ
Name	Туре	Usage	os	GUI	TUI	Pre- compiled	Coupling	License	Ease (10 = easy, 0 = hard)
Code_ASTER	Solver	Mechanics (2D, 3D)	Linux, Windows	partial	Python	yes	Saturne, syrthes, Salome, Gmsh	GPL	5
Code_Saturne	Solver	Fluid mechanics (2D, 3D)	Linux	partial	Python	yes	SYRTHES, ASTER, Salome	LGPL	5
SYRTHES	Solver	Conduction, radiation heat transfer (2D, 3D)	Linux, Windows	Full	FORTRAN	yes	Saturne, ASTER	GPL	8
Cast3M	Solver, Mesher	Multi-physics (1D, 2D, 3D)	Linux, windows, Mac	No	Gibiane	yes	Salome	Free for research and teaching	6
GetDP	Solver	Multi-physics (2D, 3D)	Linux, Windows, Mac	No	C and own language	yes	Gmsh	GPL	4
GetFem++	Solver, mesher	Multi-physics (1D, 2D, 3D)	Linux	No	C++, python, scilab	No	Gmsh	LGPL	3
FreeFem++	Solver, mesher, viewer	Multi-physics (2D, 3D)	Linux, Windows, Mac	No	C++ idiom	Yes	Gmsh	LGPL	5
FEMM	Geometry, mesher, Solver, viewer	Electromagneti sm (2D)	Windows, Linux	Yes	Lua	Yes	-	AFPL	8
Elmer	Solver, viewer	Multi-physics (2D, 3D)	Windows, linux, Mac	Yes	Own language	Yes	Gmsh, salome	GPL	6

CAD Model, mesher, and viewer

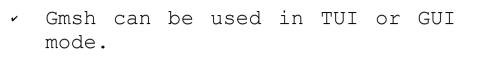
Name	Туре	OS	GUI	TUI	Pre- compiled	Coupling	License	Ease (10 = easy, 0 = hard)	
Salome platform	CAD, mesher, viewer	Linux, windows	Yes	Python	Yes	ASTER, Saturne, SYRTHES, Cast3M	LGPL	8	B
Gmsh	CAD, mesher, viewer	Linux, Windows, Mac	Yes	Own language	Yes	GetDP	GPL	7	
FreeCAD	CAD, mesher	Linux, Windows, Mac	Yes	Python	Yes	-	LGPL	7	
Paraview	Viewer	Linux, Windows, Mac	Yes	Python	Yes	Through compatible format	BSD	8	
Opendx	Viewer	Linux, Windows	Yes	-	Yes	Through compatible format	IBM public license	7	

Other possible free 3D visualization software: Visit, MayaVi

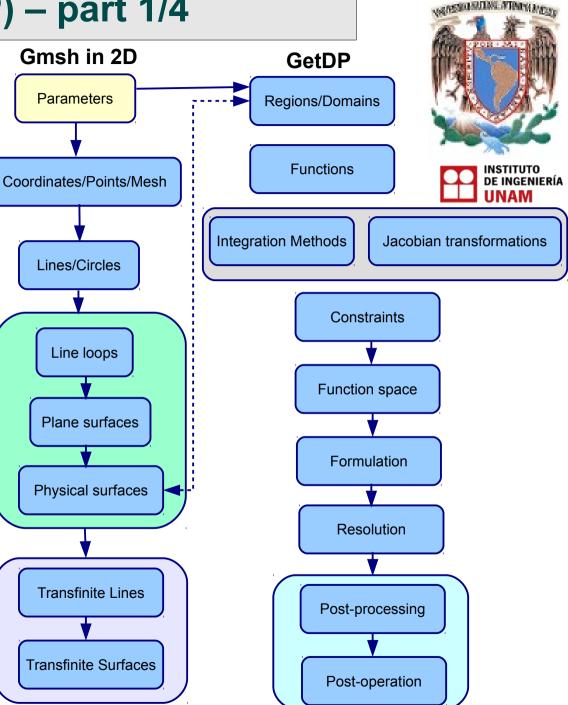

Some examples

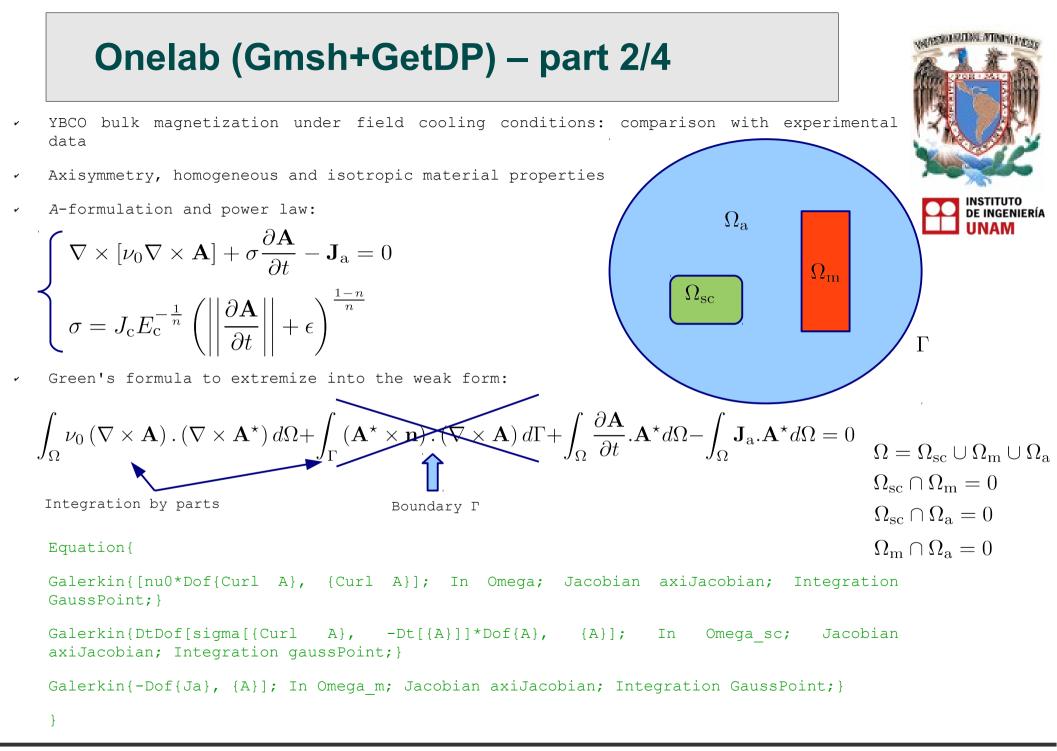
- Salome-Meca (Salome platform with Code_ASTER): creation of geometry and meshing, Linear thermal analysis.
- Gmsh and GetDP (Onelab): Creation of geometry and meshing. HTS bulk and flux trapping.
 Visualization with Gmsh and Gnuplot.
- GetFem++: AC losses in HTS thin layer comparison with analytical formula and COMSOL Multiphysics®. Post-processing and visualization with ParaView.

Salome-Meca

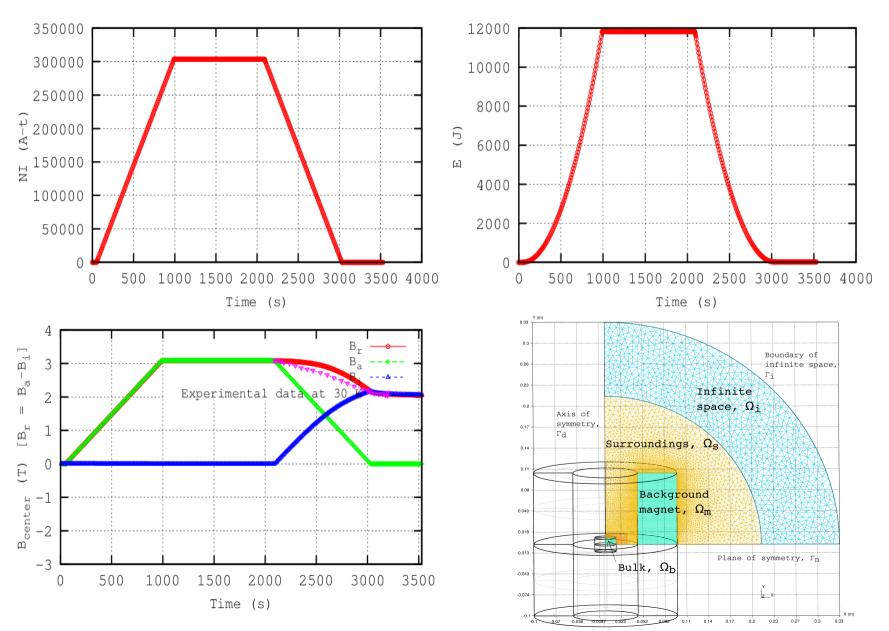

- Creation of geometries and meshes through TUI or GUI
- Crtl+n to open a new study, ctrl+t to launch a script
- Parametric study with the creation of a notebook
- Main modules: GEOM (modeler), SMESH (mesher), HOMARD (adaptive mesh), ASTER (solver) ...

Dr. Frederic Trillaud

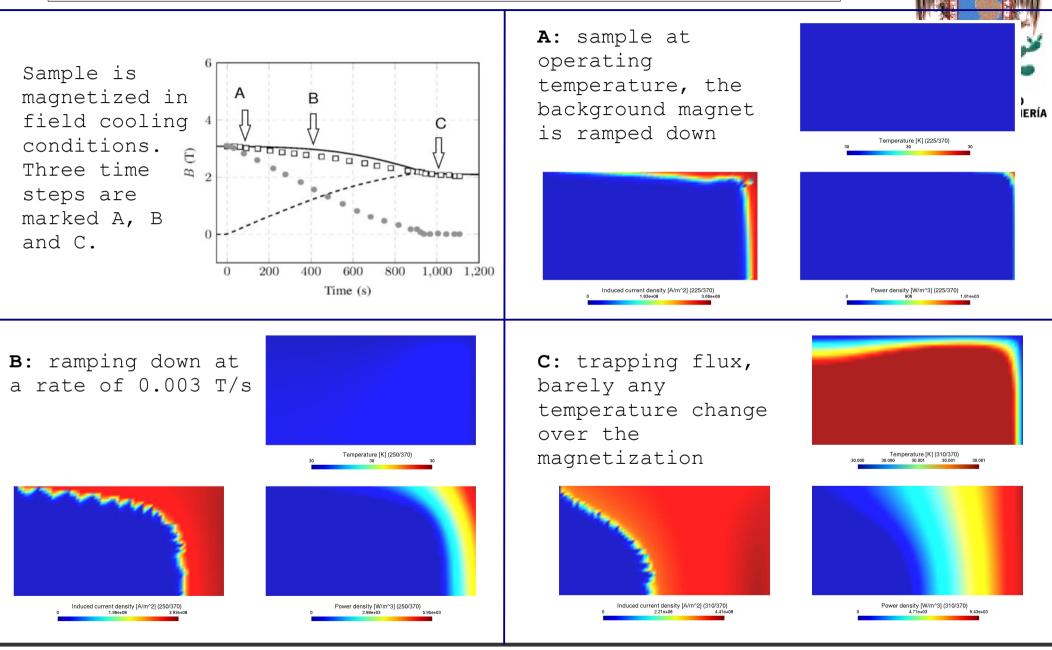

Onelab (Gmsh+GetDP) – part 1/4



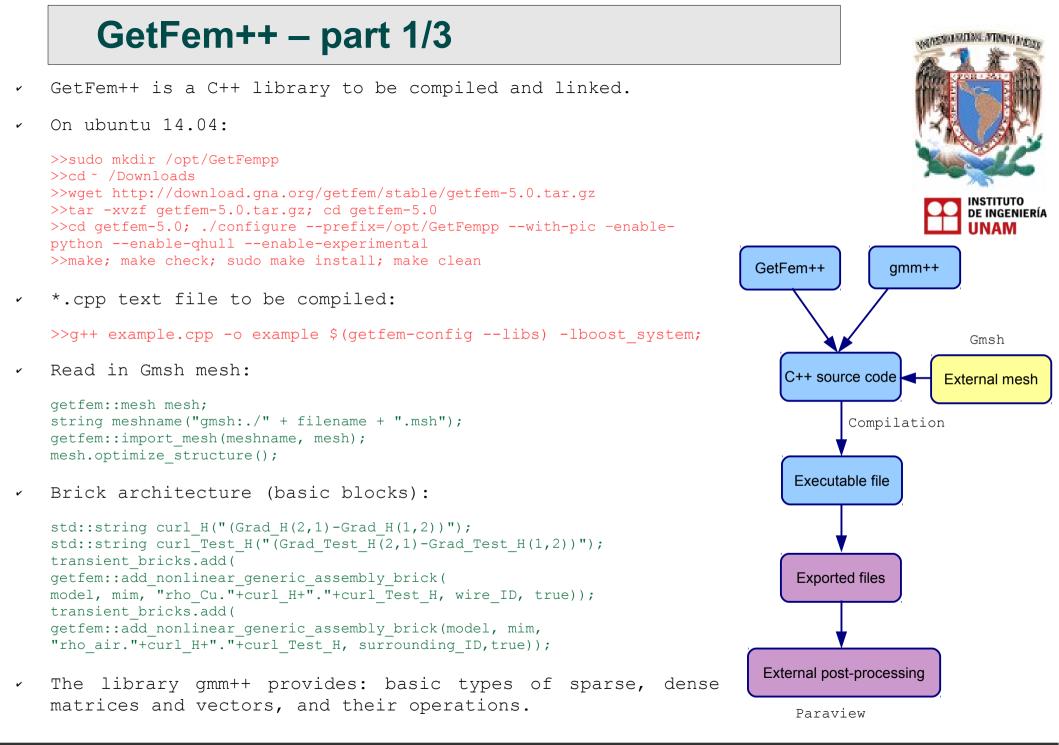
 Creation of a basic geometry and meshing (*.geo):


>>gmsh -2 example.geo -o
example.msh

- Output mesh in *example.msh*. The groups on meshes are identified in *.geo as Physical Line/Surface/Volume.
- Generation of quadrangle mesh through Transfinite Line and Transfinite Surface in 2D.
- The name of the solver file
 *.pro should be the same as the mesh: example.pro. Then, this file can be easily run in Gmsh.
- Post-processing as *.pos and table format files (gnuplot).



Onelab (Gmsh+GetDP) – part 3/4



Onelab (Gmsh+GetDP) – part 4/4

Dr. Frederic Trillaud

STREET, MILLING STREET,

~

~

~

Plane

properties

H-formulation:

llaud

homogeneous and isotropic material

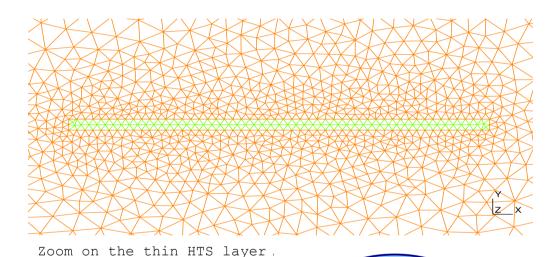
 $\Omega_{\rm sc}$

 $\Omega_{\rm a}$

 $\begin{cases} \nabla \times [\rho \nabla \times \mathbf{H}] + \mu_0 \frac{\partial \mathbf{H}}{\partial t} = 0\\ \rho = \frac{E_{\rm c}}{J_{\rm c}} \left\| \frac{\nabla \times \mathbf{H}}{J_{\rm c}} \right\|^{n-1} + \epsilon \end{cases}$

GetFem++ – part 2/3

with


AC losses in thin HTS layer.

problem

Boundary value:

$$\mathbf{H}|_{t=0} = 0$$

$$\mathbf{H}|_{\Gamma} = \frac{I_0 \sin(\omega t)}{2\pi (x^2 + y^2)^{\frac{3}{2}}} (y\mathbf{e}_{\mathbf{x}} + x\mathbf{e}_y)$$

GetFem++ – Comparison - part 3/3

Frequency : 50 Hz Tape thickness: 0.1 mm Tape width: 1.5 mm

Computation not optimized!!

 ρ air (Ω -m) (A/mm^2) $E(\mu V/cm)$ n 3 J_{c} 270 0.1 19 1e-14 1 10⁰ 0.04 GetFEM++ 5 0.035 -- Comsol 4.4 0.03 Normalized AC Looses 0.025 S 0.02 O_{0.015} ······ Norris 0.01 ---- Comsol 10 GetFEN 0.005 n 10 10⁰ 0.01 0.005 0.015 0.02 Time [s] la/lc Values of parameters from: R. Brambilla Result @ 0.8*I* et al, Supercond. Sci. Technol. 20 (2007) 16 - 24Normalization factor: $f^* I_{c}^2 / (\mu_0^* \pi)$

- Modeling with GNU Octave and FreeFem++ was presented by Dr. Víctor Manuel Rodriguez Zermeño at EUCAS 2015, Lyon France and are available on arXiv:
 - Víctor M. R. Zermeño, Salman Quaiyum, Francesco Grilli, "Open Source Codes for Computing the Critical Current of Superconducting Devices", arXiv:1509.01856
- Gmsh/GetDP (onelab), example on the website:

http://onelab.info/wiki/Superconducting wire

- M. Krasl, R. Vlk, J. Rybar, "Losses in Windings of Superconducting Traction Transformer, 2D and 3D Model", Proceedings of the 6th WSEAS/IASME, 2006.
- Gmsh and Code_aster for fusion:

http://www.fusionvic.org/LastResults/LastResults_FEstress-analysis-of-the-case/FE-stress-analysis-of-thecase.htm

Try out different software. Some may fit better your need than others.

- Some level of programming knowledge is required.

Recommendations

- Python is widely used as binding or interfacing language. Most of the free software are developed for Linux.
- For productivity, it may be recommended to use commercial software or you have to be fairly proficient if time is crucial.
- Cross-check results as benchmarking: experimental data, analytical formulae, comparison between different software/codes, etc..
- Register to the forums and mailing lists. Answers are not always provided but you have it for free.

References

- Code_ASTER: http://www.code-aster.org/V2/spip.php?rubrique2
- Code_Saturne: http://code-saturne.org/cms/
- FEMM: http://www.femm.info/wiki/HomePage
- FreeCAD: http://www.freecadweb.org/
- FreeFem++: http://www.freefem.org/ff++/
- GetFem++: http://download.gna.org/getfem/html/homepage/
- GetDP (stand alone): http://www.geuz.org/getdp/
- Gmsh/GetDP bundled under onelab: http://onelab.info/wiki/ONELAB
- Gmsh (stand alone): http://geuz.org/gmsh/
- Gnuplot: http://www.gnuplot.info/
- Grace: http://plasma-gate.weizmann.ac.il/Grace/
- Matplotlib: http://matplotlib.org/
- MayaVi: http://mayavi.sourceforge.net/
- MUMPS: http://mumps.enseeiht.fr/
- Numpy: http://www.numpy.org/
- Opendx: http://www.opendx.org/index2.php
- Paraview: http://www.paraview.org/

References

- PETsc: http://www.mcs.anl.gov/petsc/
- Salome platform: http://www.salome-platform.org/
- Salome-Meca (including Code_ASTER): http://www.code-aster.org/V2/spip.php?article303
- Scipy: http://www.scipy.org/
- SYRTHES: http://researchers.edf.com/software/syrthes-44340.html
- v Visit: https://wci.llnl.gov/simulation/computer-codes/visit/

