15 Sept. 2015, University of Bologna

2015 CHATS on Applied Superconductivity Workshop Numerical Simulation on Magnetic Field generated by Screening Current in REBCO coils

Hiroshi UEDA(Osaka University)

So NOGUCHI (Hokkaido University)

Ayako MATSUMI, Ayumu MOCHIDA, Yohei IMAICHI (Waseda University) Atsushi ISHIYAMA (Waseda University)

This research was supported Grant-in-Aid for Scientific Research (C), the Ministry of Education, Science, Sports and Culture (No.25420253).

Background

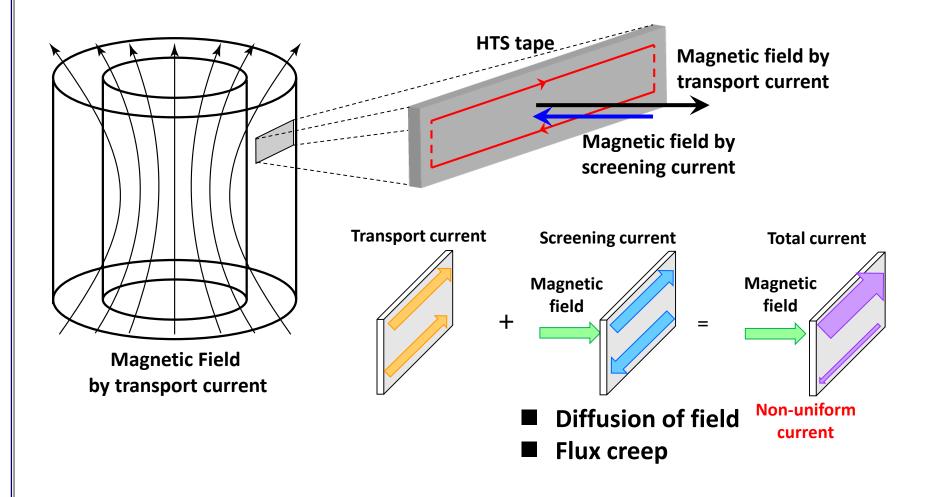
Numerical method for screening current in REBCO tape

Developed numerical simulation

Experiment

Example of experimental and numerical results

Background


Numerical method for screening current in REBCO tape

Developed numerical simulation

Experiment

Example of experimental and numerical results

Current distribution in REBCO tape

Screening current

(1) Field reduction

Screening-current field generates in the opposite direction of the field by the transport current, thus reducing the magnetic field.

(2) Accuracy of field distribution

Screening current leads to non-uniform current distributions in the HTS tape, and the field quality is deteriorated.

(3) Temporal stability

Screening-current field is time-dependent, thus affecting the time stability of the magnetic field.

(4) Field repeatability

Screening current remains in HTS tape after the repetition of charging and discharging, thus not repeatable the magnetic field distribution.

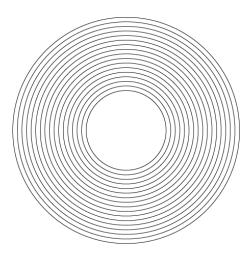
Prediction and reduction of screening-current field We developed a novel numerical simulation.

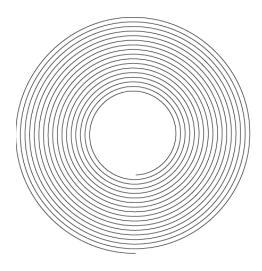
Background

Numerical method for screening current in REBCO tape

Developed numerical simulation

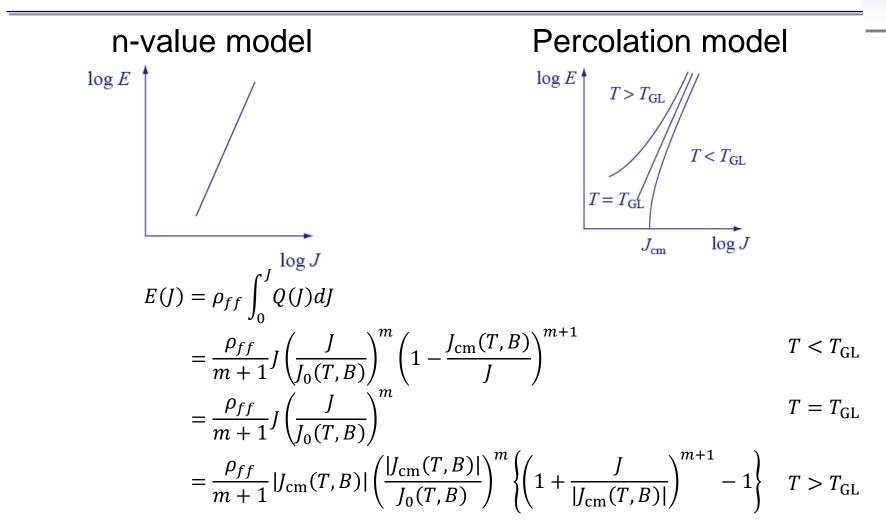
Experiment


Example of experimental and numerical results


Choice of model and formulation

Model and formulation		Choice	
Model of coil winding		✓ Assembly of 1 turn coil	
(Pancake winding, Layer winding)		 Consideration of winding configuration 	
	E-J characteristics	✓ n-value model	
Model of		✓ Flux flow and creep model	
superconducting		✓ Percolation model	
property	Distribution of property in tape (local Ic variation)	✓ Uniform	
		✓ Non-uniform	
	Model of tape	 ✓ Thin-approximation (neglect of 'thickness' effect) 	
		✓ 'thickness' effect	
	Taskaisus	✓ T method	
Formulation	Technique	✓ A method	
		✓ No coupling -> External field	
	Magnetic coupling among tapes	 ✓ Far: no coupling, Neighborhood: coupling 	
		✓ All interactions are considered	

Coil winding


✓ Assembly of 1 turn coil (the closed path of screening current in each 1 turn coil) ✓ Pancake winding, Layer winding (the end-to-end path of screening current in winding tape)

Superconducting characteristics Critical state model n-value model \boldsymbol{E} E $E_{\rm C}$ 0 $J_{\rm c}$ 0 $J_{\rm c}$ Ι Ι $J = J_{c}(|B|) \frac{E}{|E|} \text{ if } |E| \neq 0 \implies J = J_{c}$ $E = E_{\rm c} \left(\frac{J}{I_{\rm c}}\right)^n$ $\frac{\partial \boldsymbol{J}}{\partial t} = 0$ if $|\boldsymbol{E}| = 0$

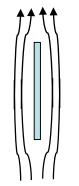
Superconducting characteristics

K. Yamafuji and T. Kiss: "Current-voltage characteristics near the glass-liquid transition in high-Tc superconductors", Physica C **290** (1997) 9-22

Formulation

✓ FEM or BEM (Maxwell equation, Ohm's law, Biot-Savart law...)

✓ Magnetic coupling among tapes


- Biot-Savart law on an assumption of uniform current except for target element
- ✓ Unknown current distribution for all element

✓ Thin-film approximation

The current direction is assumed to be parallel to the wide face of the tape.

Thin-film approximation

'thickness' effect

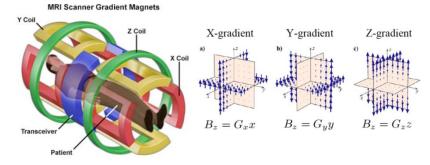
11

Numerical method for screening current

		Axisymmetric		3D -> 2D	3D		
		Y. Yanagisawa ⁽¹⁾⁽²⁾	N. Amemiya ⁽³⁾	S. Noguchi ⁽⁴⁾	H. Ueda ⁽⁵⁾⁽⁶⁾		
		Z ↓		3D 2D			
	nalysis bjects	 ✓ Circular coil ✓ No difference between Pancake winding and Layer winding 		 Circular and non-circular coil Difference between Pancake winding and Layer winding 			
a	oupling mong apes	<u>No</u> Magnetic field by uniform current (Complete elliptic integral)	 Partially Yes ✓ Neighborhood: Yes ✓ Far: No (Uniform current) 	<u>No</u> Magnetic field by uniform current (Biot-Savart law)	 Yes ✓ Neighborhood: Yes ✓ Far: Multipole expansion (considered in iteration solver) 		
	(2) Y. Yanag	 (1) Y. Yanagisawa, et at., Physica C, 469 (2009) 1996–1999. (2) Y. Yanagisawa, et al., IEEE Trans. Appl. Supercond., 20 (2010) 744-747. (3) N. Amemiya, et al., Supercond. Sci. Technol, 21 (2008) 095001. (4) R. Itoh, et al., IEEE Trans. Appl. Supercond., 23 (2013) 4600905. (5) H. Ueda, et al., IEEE Trans. Appl. Supercond., 23 (2013) 4100805. (6) H. Ueda, et al., IEEE Trans. Appl. Supercond., 24 (2014) 4701505. 					

Background

Numerical method for screening current in REBCO tape

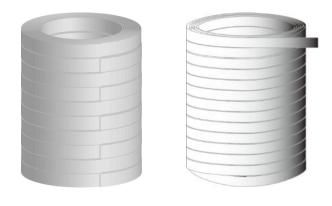

Developed numerical simulation

Experiment

Example of experimental and numerical results

Analysis objects

 MRI: Non-axisymmetric field distribution by gradient coil



http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/fullarticle.html

✓ Cyclotron: Non-circular coil

✓ Pancake winding, Layer winding

Path of screening current in tape Time constant

Formulation of 3-dimensinonal magnetic analysis

Formulation

Analysis model: 3D-FEM including Integral term Thin-film approximation

Able to consider a difference between Layer winding and Pancake winding

$$\nabla \times (\rho \nabla \times T) = -\frac{\partial B}{\partial t}$$

$$\nabla \times T = J$$

$$B = B_e + B_0$$

$$B_e = \frac{\mu_0}{4\pi} \int_V \frac{J' \times R}{R^3} dV'$$

J: Current density in tape

E: Electric field

 ρ : Resistivity

 B_e : Magnetic field by current in tape

B₀: External magnetic field

R: Vector from source point, r' to observed point, r

$$\nabla \times \rho(\nabla \times T) + \frac{\mu_0}{4\pi} \frac{\partial}{\partial t} \int_V \frac{(\nabla \times T') \times R}{R^3} dV' = -\frac{\partial B_0}{\partial t}$$

Thin-film approximation T = Tn T' = T'n

d : thickenss of superconductor

$$\{\boldsymbol{\nabla} \times \rho(\boldsymbol{\nabla} T \times \boldsymbol{n})\} \cdot \boldsymbol{n} + \frac{\mu_0 d}{4\pi} \frac{\partial}{\partial t} \int_{S} \frac{(\boldsymbol{\nabla} T' \times \boldsymbol{n}') \times \boldsymbol{R}}{R^3} \cdot \boldsymbol{n} dS' = -\frac{\partial \boldsymbol{B}_0}{\partial t} \cdot \boldsymbol{n}$$

Numerical technique

$$\{ \nabla \times \rho(\nabla T \times \mathbf{n}) \} \cdot \mathbf{n} + \frac{\mu_0 d}{4\pi} \frac{\partial}{\partial t} \int_{S} \frac{(\nabla T' \times \mathbf{n}') \times \mathbf{R}}{R^3} \cdot \mathbf{n} \, dS' = -\frac{\partial B_0}{\partial t} \cdot \mathbf{n}$$
FEM Integral term

Superconducting property

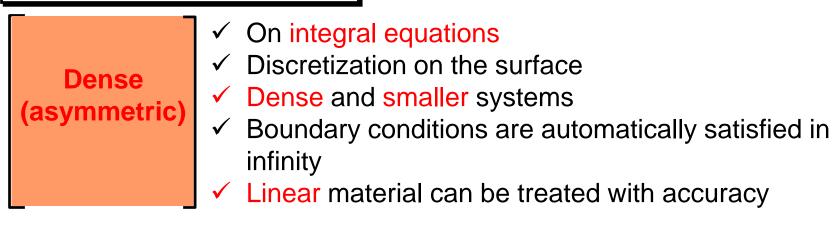
$$E = E_c \left(\frac{J}{J_c(B,\theta,T)}\right)^{n(B,\theta,T)}$$

$$\rho = \frac{E_c}{J_c(B,\theta,T)} \left(\frac{J}{J_c(B,\theta,T)}\right)^{n(B,\theta,T)-1}$$

Strong nonlinearity

Modified Newton-Raphson method accelerated by using a Line Search

K. Fujiwara et al. "The Newton–Raphson Method Accelerated by Using a Line Search —Comparison Between Energy Functional and Residual Minimization", pp.1724-1727, IEEE Trans. on Magn, vol.41, 2005


16

Numerical method feature **FEM** ✓ On a set of partial differential equations Band ✓ Discretization in the domain Sparse

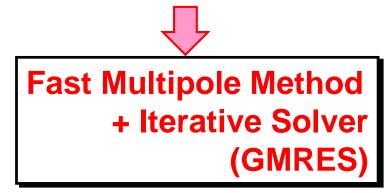
- ✓ Sparse and large systems
- ✓ Boundary conditions are approximated in infinity
- Nonlinear material can be treated

BEM or Integral term

(symmetric)

Numerical technique

$$\{\boldsymbol{\nabla} \times \rho(\boldsymbol{\nabla} T \times \boldsymbol{n})\} \cdot \boldsymbol{n} + \frac{\mu_0 d}{4\pi} \frac{\partial}{\partial t} \int_{S} \frac{(\boldsymbol{\nabla} T' \times \boldsymbol{n}') \times \boldsymbol{R}}{R^3} \cdot \boldsymbol{n} \, dS' = -\frac{\partial \boldsymbol{B}_0}{\partial t} \cdot \boldsymbol{n}$$
FEM

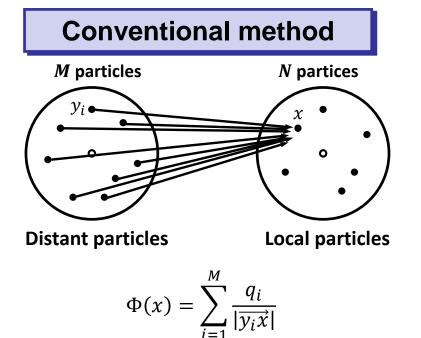

Superconducting property

$$E = E_c \left(\frac{J}{J_c(B,\theta,T)}\right)^{n(B,\theta,T)}$$

$$\rho = \frac{E_c}{J_c(B,\theta,T)} \left(\frac{J}{J_c(B,\theta,T)}\right)^{n(B,\theta,T)-1}$$

Integral term

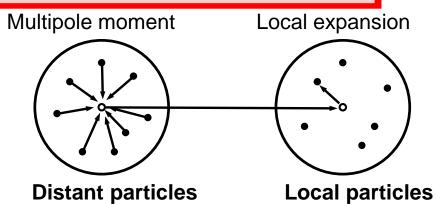
A process of the computation of all pairwise interactions among sources is needed similar to the boundary element method.



Strong nonlinearity

Modified Newton-Raphson method accelerated by using a Line Search

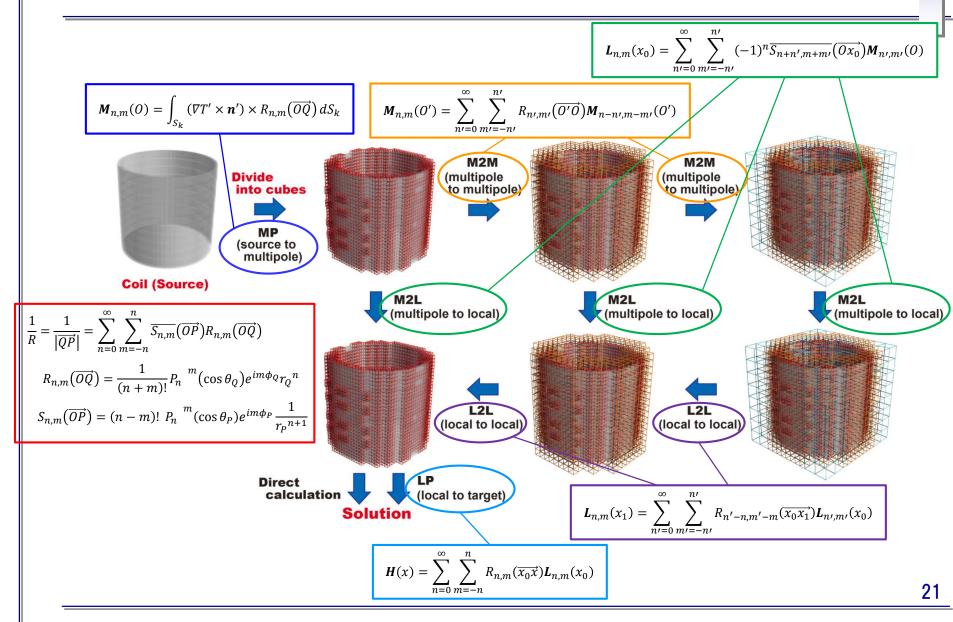
K. Fujiwara et al. "The Newton–Raphson Method Accelerated by Using a Line Search —Comparison Between Energy Functional and Residual Minimization", pp.1724-1727, IEEE Trans. on Magn, vol.41, 2005 18


Fast multipole method: FMM

- The FMM were developed for the fast evaluation of potential fields generated by large number of sources (e.g. the gravitational and electrostatic potential fields governed by Laplace equation) as it is called the *N*-body problem.
- The *N*-body problem in numerical simulations describes the computation of all pairwise interactions among *N* bodies with O(N²) runtime complexity.

Fast multipole method: FMM

Multipole/Local expansion



Multipole expansion allows one to group sources that lie close together and treat them as if they are a single source.

- ✓ Multipole moments represent distant particle groups.
- ✓ The multipole moment associated with a distant group can be translated into the coefficient of the local expansion associated with a local group.
- ✓ Local expansion is introduced to evaluate the contribution from distant particles in the form of a series.

L. Greengard and V. Rokhlin: "A new version of the fast multipole method for the Laplace equation in three dimensions," *Acta Numerica*, vol. 6, pp. 229-269, Jan.1997.

Procedure of FMM

Accuracy of the method

Parameter of FMM influenced calculation accuracy

- ✓ Mesh of finite element
- ✓ Order of Gauss-Legendre quadrature
- Determination of far or neighborhood in FMM
 Far: FMM
 Neighborhood: Direct calculation
- ✓ Order of multipole/local expansion
- ✓ Tolerance of nonlinear calculation for superconductor

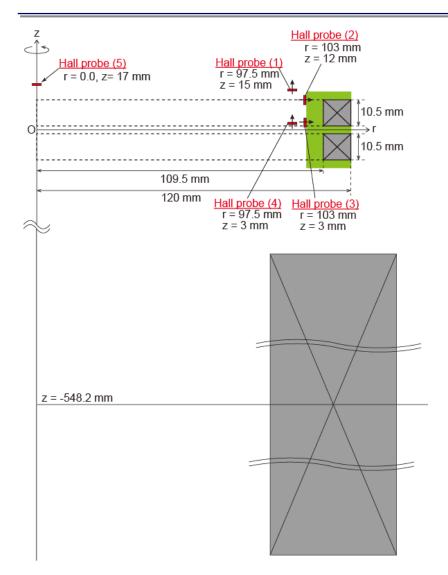
Accuracy (field-homogeneity)

Inner diameter (mm)	50
Outer diameter (mm)	158.5
Number of turns/single pancake	280
Number of single pancake	30
Gap between single pancakes (mm)	0.8
Transport current (A)	200

Legendre expansion and homogeneity on DSV of $\rho=12.5~mm$

	Biot-Savart law		FMM	
order, n	Field, b_n (T)	homogeneity (ppm)	Field, b_n (T)	homogeneity (ppm)
0	10.374		10.375	
2	-5.72 × 10 ⁻²	-5.51 × 10 ³	-5.71 × 10 ⁻²	-5.51 × 10 ³
4	-7.28 × 10 ⁻⁴	-7.01 × 10	-7.28 × 10 ⁻⁴	-7.02 × 10
6	-4.64 × 10 ⁻⁶	-4.48 × 10 ⁻¹	-4.64 × 10 ⁻⁶	-4.47 × 10 ⁻¹
8	-2.34 × 10 ⁻⁸	-2.25 × 10 ⁻³	-2.31 × 10 ⁻⁸	-2.23 × 10 ⁻³
10	5.72 × 10 ⁻⁸	5.08 × 10 ⁻³	5.62 × 10 ⁻⁸	5.42 × 10 ⁻³
12	-5.30 × 10 ⁻⁸	-5.10 × 10 ⁻³	-5.32 × 10 ⁻⁸	-5.13 × 10 ⁻³
14	4.49 × 10 ⁻⁸	4.33 × 10 ⁻³	4.88 × 10 ⁻⁸	4.71 × 10 ⁻³
16	-2.34 × 10 ⁻⁸	-2.26 × 10 ⁻³	-2.52 × 10 ⁻⁸	-2.43 × 10 ⁻³
18	1.92 × 10 ⁻⁸	1.85 × 10 ⁻³	2.28 × 10⁻ ⁸	2.20 × 10 ⁻³
20	-1.85 × 10 ⁻⁸	-1.78 × 10 ⁻³	-2.03 × 10 ⁻⁸	-1.96 × 10 ⁻³
Total		-5.58 × 10 ³		-5.58 × 10 ³

Background


Numerical method for screening current in REBCO tape

Developed numerical simulation

Experiment

Example of experimental and numerical results

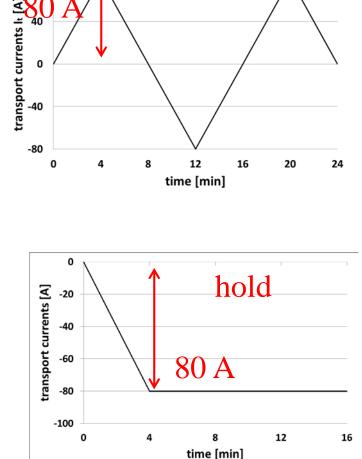
Measurement setup

REBCO coil

LTS magnet for generating external field

JMTD-10T100E1 Bore diameter: 100 mm Maximum field at center: 10 T Uniformity: 0.088 %

2T -z direction



26

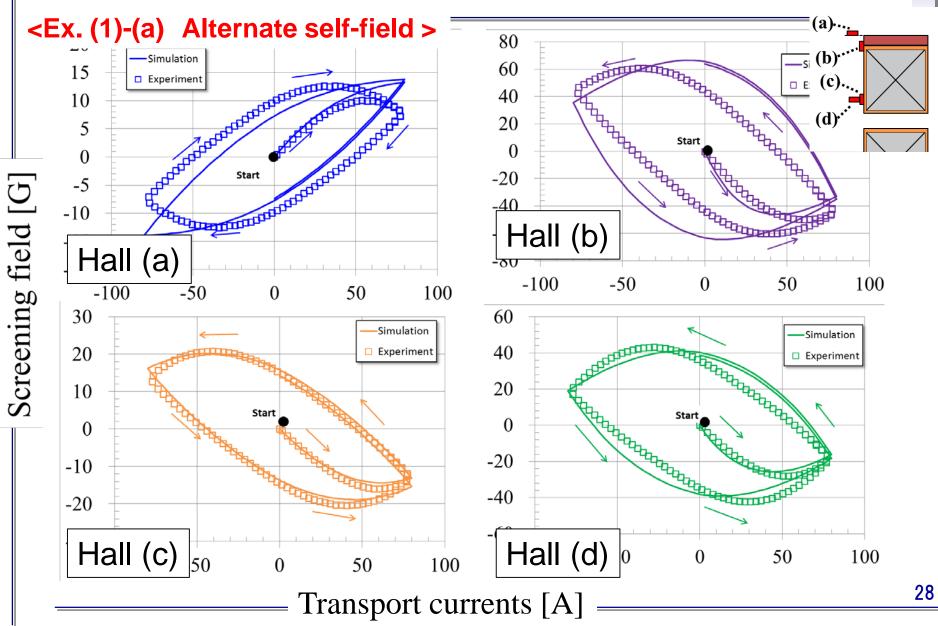
Current patterns

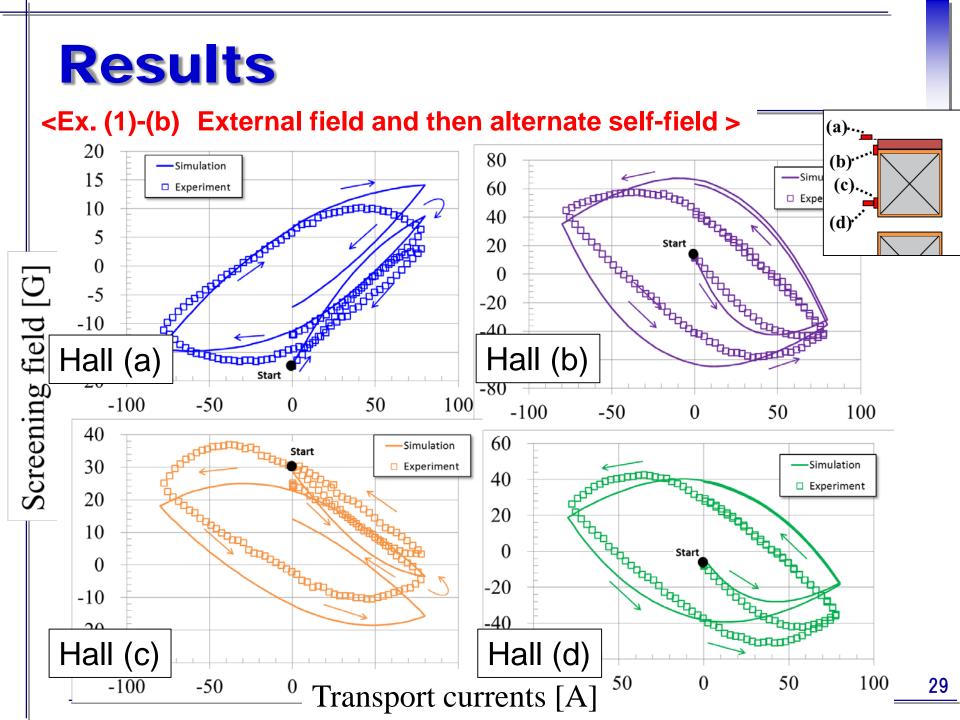
- (1) Alternate triangular wave (a) Self-field of HTS coil (b) External field and then self-field
- (2) Charge and hold (a) Self-field of HTS coil

*sweep rate: 20 A/min External field is applied by LTS magnet.

0

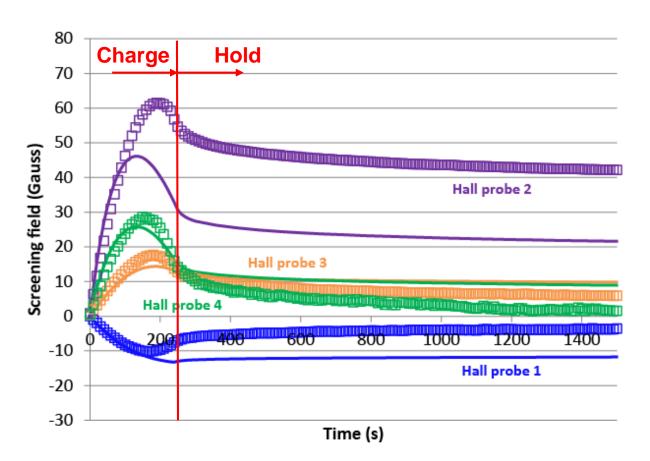
Background

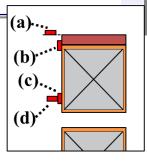

Numerical method for screening current in REBCO tape


Developed numerical simulation

Experiment

Example of experimental and numerical results


Results



Charge and hold

<Ex. (2) Charge and hold self-field>

The differences between the experimental and numerical results are assumed to be due to

- ✓ Measuring limit of a coil constant
- ✓ Location accuracy of Hall probe
- ✓ Difference of superconducting characteristic between the short sample and the used in coil winding.

Background

Numerical method for screening current in REBCO tape

Developed numerical simulation

Experiment

Example of experimental and numerical results

- We investigated the current distribution in the HTS tape and the spatial and temporal behavior of the magnetic field using our developed three-dimensional numerical simulation.
- ✓ The numerical results agree well with the experimental results. Additionally, we confirmed the validity of the numerical simulation.
- ✓ We intend to utilize the developed simulation code to suppress the screening current and to investigate the influence of the I_c distribution on the REBCO tape.
- ✓ These data are essential for the development and design of NMRs, MRIs, and accelerators, which require high accuracy and temporally stable magnetic field.

In future

✓ We evaluated the following issues using a developed simulation code.

10T-class small bore REBCO coil

coil construction and screening-current field measurement

10T-class human whole-body REBCO-MRI coil design and homogeneity prediction

Air-core cyclotron using REBCO coil

coil design and field-distribution prediction

These results will be reported in future, MT-24 and ASC 2016.

Thank you for your attention.