Elias Coniavitis

Tau Reconstruction & Identification in ATLAS

Chicagoland Workshop February 11th, 2015

The Tau Lepton

- $m_{\tau} = 1.777 \text{ GeV}$
- Short life-time: look for tau decay products

- Tau Reco typically refers to reconstruction of **hadronic** decays
 - Leptonic decays: use same reconstruction as for prompt leptons
- Tau-jet: Reconstructed visible decay products

Tau-Jet Reconstruction*

• Start with a calorimeter jet as *seed*

– Anti-kT algorithm, distance parameter R=0.4 – pT>10 GeV, $|\eta|$ <2.5

- Calculate 4-momentum of tau-jet using only topological clusters within ΔR <0.2 of cluster barycenter
- Associate tracks (p_T >1 GeV) within $\Delta R < 0.2$
 - Also count tracks in *isolation region*, $0.2 < \Delta R < 0.4$

*: Slightly simplified... See arXiv:1412.7086 for full details

Tau Energy Scale

- Clusters of seeding jet at local calibration (LC) scale
 - Accounts for non-compensating nature of ATLAS calorimeter and depositions outside clusters and in non-sensitive regions
- On top of this, tau-specific correction factor $E_{LC} \rightarrow E_{\tau\text{-vis}}$ derived using MC
 - Account for specific particle content in taus
 - Additional small corrections for pile-up, and for poorly instrumented regions

Tau Energy Scale

- Uncertainty on TES typically <4%. Two different methods to estimate, giving consistent results
- Single particle response studies (test beam studies, E/p measurements)
 - Use pseudo-experiments to propagate single-particle response uncertainties to reconstructed tau-jet
 - Further uncertainties due to underlying event, detector model, pile-up etc
- In-situ method using $Z \rightarrow \tau \tau$ tag-&-probe
 - Template fits (varying TES)
 - Measure data/MC shift at percent-level

Source	Uncertainty [%]
Response	1.2 - 2.5
Detector model	0.3 - 2.5
UE	0.2 - 2.4
Pile-up	0.5 - 2.0
Non-closure	0.5 - 1.2
Shower model	0.0 - 2.0
Total	1.8 - 3.9

- Problem: Tau-jets look a lot like QCD jets
 We have a lot of those at the LHC...
- Requiring 1 or 3 tracks reduces contamination, but not nearly enough to be usable for most analyses
- Need a more powerful discriminator...

- What handles do we have?
 - Isolation
 - Lateral shape
 - Narrow energy depositions
 - Small track-to-axis distance
 - Leading track momentum fraction
 - Secondary vertex
 - Invariant mass

• Build variables exploiting these differences

Variable definitions in backup slide

- Build variables exploiting these differences
- Train Boosted Decision Trees
 - Separately for 1-prong and 3-prong tau-jets
 - Loose/medium/tight working points defined with pT-dependent cut on the BDT score

- Build variables exploiting these differences
- Train Boosted Decision Trees
 - Separately for 1-prong and 3-prong tau-jets
 - Loose/medium/tight working points defined with pT-dependent cut on the BDT score
- Pile-up corrected input variables \rightarrow ID is pileup robust $\int_{1}^{2} \int_{1}^{1.2} \int_{1}^{1} \int_{1}^{1.2} \int_{1}^$

- Z→ττ tag-&-probe used to measure [#]/₄₀₀₀ identification efficiency in data
 - Template fit of extended track multiplicity
- Data/MC correction factors determined
 - In general consistent with 1.0; uncertainties (2-6)% for $p_T > 20$ GeV
- Measurement cross-checked with W→τν and ttbar: consistent results in all channels

- Electrons misidentified as tau-jets also non-negligible background
- Train dedicated BDT, utilising among others transition radiation in TRT and longitudinal shower shape
- Efficiency and correction factors measured in Z→ee tag-&-probe

Physics with Taus in Run 1

Elias Coniavitis - 11/2/2015

Physics with Taus in Run 1

• A lot of fun to be had with taus also in Run 2!

Establish H $\rightarrow \tau\tau$ at 5 sigma Study Higgs CP properties using τ decay angular correlations BSM A/H $\rightarrow \tau\tau$ Charged Higgs searches (H+ $\rightarrow \tau\nu$) HH with one H $\rightarrow \tau\tau$ High-mass resonances SUSY with τ :s Lepton-Flavor Violating decays of H or Z ...

- A lot of fun to be had with taus also in Run 2!
- Tau-reconstruction in Run 2
 - Identification will work like in Run 1; expect similar efficiency and rejection
 - Uncertainties initially MC-based; when enough int. lumi. replace by tag-&-probe results (as in Run 1)
 - Tau triggering will benefit from FTK

- A lot of fun to be had with taus also in Run 2!
- Tau-reconstruction in Run 2
- Big new thing: Substructure information
 - Energy flow based reconstruction of hadronic tau decay products
 - Subtract $\pi \pm$ in EM-Calo layers
 - Reconstruct & identify $\pi 0$ in remaining clusters

- A lot of fun to be had with taus also in Run 2!
- Tau-reconstruction in Run 2
- Big new thing: Substructure information

- A lot of fun to be had with taus also in Run 2!
- Tau-reconstruction in Run 2
- Big new thing: Substructure information
 - Energy flow based reconstruction of hadronic tau decay products
 - Subtract $\pi \pm$ in EM-Calo layers
 - Reconstruct & identify $\pi 0$ in remaining clusters
 - Allows decay mode classification
 - Significant resolution improvement

- A lot of fun to be had with taus also in Run 2!
- Tau-reconstruction in Run 2
- Big new thing: Substructure information
- Beyond run 2
 - Expect to maintain performance at ~similar levels, with appropriate pile-up correction
 - So far, tau-ID shown to be very stable against pile-up

Summary

- Tau reconstruction in ATLAS performed very well in Run 1, supporting important physics results
 - Reconstruction seeded by calorimeter jets, associating tracks
 - Suppression of fakes achieved with BDT exploiting characteristics of the tau decay
 - Algorithms robust against pile-up
- Looking forward to similar performance in Run 2 and beyond
 - Exciting new addition: Substructure information
- Did not discuss tau triggers: crucial component for many analyses involving taus!

Suggested Reading:

arXiv:1412.7086 for tau reconstruction & performance in Run 1 (incl. trigger) *ATL-PHYS-PUB-2013-004* for (some) discussion on tau performance at HL-LHC

Backup Slides

Source: lonelychairsatcern.tumblr.com

Tau ID Variables Definitions

- Central energy fraction (f_{cent}) : Fraction of transverse energy deposited in the region $\Delta R < 0.1$ with respected to all energy deposited in the region $\Delta R < 0.2$ around the $\tau_{had-vis}$ candidate calculated by summing the energy deposited in all cells belonging to TopoClusters with a barycentre in this region, calibrated at the EM energy scale. Biases due to pile-up contributions are removed using a correction based on the number of reconstructed primary vertices in the event.
- Leading track momentum fraction (f_{track}) : The transverse momentum of the highest- p_{T} charged particle in the core region of the $\tau_{\text{had-vis}}$ candidate, divided by the transverse energy sum, calibrated at the EM energy scale, deposited in all cells belonging to TopoClusters in the core region. A correction depending on the number of reconstructed primary vertices in the event is applied to this fraction, making the resulting variable pile-up independent.
- **Track radius (** R_{track} **):** p_{T} -weighted distance of the associated tracks to the $\tau_{had-vis}$ direction, using all tracks in the core and isolation regions.
- Leading track IP significance ($S_{\text{leadtrack}}$): Transverse impact parameter of the highest- p_{T} track in the core region, calculated with respect to the TV, divided by its estimated uncertainty.
- Number of tracks in the isolation region $(N_{\text{track}}^{\text{iso}})$: Number of tracks associated with the $\tau_{\text{had-vis}}$ in the region $0.2 < \Delta R < 0.4$.
- **Maximum** ΔR (ΔR_{Max}): The maximum ΔR between a track associated with the $\tau_{\text{had-vis}}$ candidate and the $\tau_{\text{had-vis}}$ direction. Only tracks in the core region are considered.

- Transverse flight path significance $(S_{\rm T}^{\rm flight})$: The decay length of the secondary vertex (vertex reconstructed from the tracks associated with the core region of the $\tau_{\rm had-vis}$ candidate) in the transverse plane, calculated with respect to the TV, divided by its estimated uncertainty. It is defined only for multi-track $\tau_{\rm had-vis}$ candidates.
- **Track mass (m_{\text{track}}):** Invariant mass calculated from the sum of the four-momentum of all tracks in the core and isolation regions, assuming a pion mass for each track.
- Track-plus- π^0 -system mass $(m_{\pi^0+\text{track}})$: Invariant mass of the system composed of the tracks and π^0 mesons in the core region.
- Number of π^0 mesons (N_{π^0}) : Number of π^0 mesons reconstructed in the core region.
- Ratio of track-plus- π^0 -system p_T $(p_T^{\pi^0+\text{track}}/p_T)$: Ratio of the p_T estimated using the track + π^0 information to the calorimeter-only measurement.

From arXiv:1412.7086