

Feb 11, 2014

Exclusions

- ...but very few excesses
- Expect several 3σ fluctuations, but almost none observed
- Will show personal selection of > 2σ excesses
- Goals:
 - Make sure they're checked in run 2 (and by other experiment)
 - Identify cross-checks: kinematic distributions, background estimates, etc
 - Identify possible signal models \rightarrow check other final states

Dilepton Mass "Edge" Search

• Search for decay $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$

- M_{ll} (sensitive variable) uses only clean, well-measured leptons
- Striking feature + simple background estimation (using eµ events)

Feb 11, 2014

CMS Edge Results

Counting experiment $20 < M_{gg} < 70 \text{ GeV}$:

	Central	
Observed [SF]	860	
Flav. Sym. [OF]	$722\pm27\pm29$	
Drell–Yan	8.2 ± 2.6	
Total estimates	730 ± 40	
Observed – Estimated	130^{+48}_{-49}	
Significance $[\sigma]$	2.6	

Fit $M_{\varrho\varrho}$ distribution:

	Central
Drell–Yan	158 ± 23
Flav. Sym. [OF]	2270 ± 44
R _{SF/OF}	1.03
Signal events	126 ± 41
$m_{\ell\ell}^{\mathrm{edge}}[\mathrm{GeV}]$	78.7 ± 1.4

CMS-PAS-SUS-12-019

Feb 11, 2014

2 e/µ leptons with $p_T > 20$ GeV and $l\eta l < 1.4$ ($n_{jets} \ge 2$ AND $E_T^{miss} > 150$ GeV) OR ($n_{jets} \ge 3$ AND $E_T^{miss} > 100$ GeV)

$ee+\mu\mu$ search region

19.4 fb⁻¹ (8 TeV) 19.4 fb⁻¹ (8 TeV) **CMS** Preliminary **CMS** *Preliminary* Data Data 180 -Fit -Fit 160 160 --- FS GeV Events / 5 GeV --- DY --- Signal Events / 5 100 best fit 80 signal model 20 Pul Pull 200 150 200 250 300 250 300 100 100 150 m_{II} [GeV] m_{II} [GeV]

eµ control region

- **2.6σ excess** in counting experiment
- M_{edge} = 79 GeV from fit (also ~3σ excess)

- Problems with 2^l triggers for ttbar estimation
 - e.g. broken eµ trigger would produce ee+µµ "excess"
 - Cross-checked with 1ℓ and E_T^{miss} triggers \rightarrow consistent results
- Underestimation of Z+jets (off-shell Z, mismeasured leptons)
 - Would need to be underestimated by ×15 to explain results
 - Check in 2l+1 jet events \rightarrow no excess at low $M_{\varrho\varrho}$
 - $n_{b-jets} = 0$ bin shows no excess (excess mostly in 1b and 2b bins)
- Underestimation of fake lepton backgrounds
 - Could populate ee more than eµ, $\mu\mu$ → but ee and $\mu\mu$ results consistent
 - Data-driven fake background estimation confirms this bkg is negligible
 - Tighten the lepton d_0 and isolation cuts \rightarrow no significant changes
- It is difficult to come up with systematic effects that explain this \rightarrow fluctuation or signal?

Constructing a (Simplified) Model

- Need $\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0$ decay to explain edge
- Need strong production (squarks/gluinos) to explain jets
- Excess events don't have very large $n_{jets} \rightarrow squark-pairs$
- Excess events have b-jets \rightarrow choose sbottom-pairs

Constructing a (Full) Model

• Construct 2 models with 390 GeV sbottom-pairs, choose SUSY parameters to fit CMS edge while evading other LHC constraints

Wagner and Huang, Phys. Rev. D91 (2015) 015014

Feb 11, 2014

ATLAS 32 Results

- Observe excesses in SR0τa (l+l-l, l+l-l')
 - -3ℓ (no τ) with 1 SFOS pair, categorize events with M_{SFOS}, M_T, E_T^{miss}
 - Excesses have moderate E_T^{miss} , M_T values

 M_{SFOS} 12-40 GeV M_{T} < 80 GeV — E_T^{miss} 50-90 GeV **2.2σ**

	Sample	$SR0\tau a$ -bin01	$SR0\tau a$ -bin 02	$SR0\tau a$ -bin03	$SR0\tau a$ -bin04	$SR0\tau a$ -bin 05	$SR0\tau a$ -bin06	
	WZ	$13.2^{+3.4}_{-3.2}$	3.0 ± 1.4	7.8 ± 1.6	$4.5^{+1.1}_{-1.0}$	6.3 ± 1.6	3.7 ± 1.6	
	ZZ	$1.4^{+0.6}_{-0.5}$	0.12 ± 0.06	0.40 ± 0.14	0.20 ± 0.18	1.5 ± 0.5	$0.25^{+0.14}_{-0.11}$	
	$t\bar{t}V + tZ$	0.14 ± 0.05	0.07 ± 0.04	$0.04^{+0.05}_{-0.04}$	0.14 ± 0.13	0.11 ± 0.08	$0.047^{+0.022}_{-0.021}$	
	VVV	0.33 ± 0.33	0.10 ± 0.10	0.19 ± 0.19	0.6 ± 0.6	$0.26^{+0.27}_{-0.26}$	0.24 ± 0.24	
	Higgs	0.66 ± 0.26	0.15 ± 0.08	0.64 ± 0.22	$0.46^{+0.18}_{-0.17}$	$0.36^{+0.14}_{-0.15}$	$0.33^{+0.13}_{-0.12}$	
V	Reducible	6.7 ± 2.4	0.8 ± 0.4	$1.6^{+0.7}_{-0.6}$	2.7 ± 1.0	$4.3^{+1.6}_{-1.4}$	2.0 ± 0.8	
	Total SM	23 ± 4	4.2 ± 1.5	10.6 ± 1.8	$8.5^{+1.7}_{-1.6}$	$12.9^{+2.4}_{-2.3}$	$6.6^{+1.9}_{-1.8}$	
	Data	36	5	9	9	11	13	<
/	$p_0(\sigma)$	0.02 (2.16)	0.35 (0.38)	0.50	0.40 (0.26)	0.50	0.03 (1.91)	
	N_{exp}^{95}	$14.1^{+5.6}_{-3.6}$	$6.2^{+2.5}_{-1.7}$	$8.4^{+3.1}_{-2.3}$	$7.7^{+3.1}_{-2.1}$	$9.0^{+3.6}_{-2.5}$	$8.0^{+3.2}_{-1.9}$	
	$N_{\rm obs}^{95}$	26.8	6.9	7.3	8.4	7.9	14.4	
	Sample	$SR0\tau a$ -bin07	$SR0\tau a$ -bin08	$SR0\tau a$ -bin09	$SR0\tau a$ -bin10	$\mathrm{SR}0 au$ a-bin11	$SR0\tau a$ -bin12	
	WZ	7.6 ± 1.3	$0.30^{+0.25}_{-0.24}$	$16.2^{+3.2}_{-3.1}$	$13.1^{+2.5}_{-2.6}$	19 ± 4	3.7 ± 1.2	
	ZZ	$0.55^{+0.16}_{-0.14}$	$0.012^{+0.008}_{-0.007}$	$1.43^{+0.32}_{-0.28}$	$0.60^{+0.12}_{-0.13}$	0.7 ± 1.2	0.14 ± 0.09	
	$t\bar{t}V + tZ$	$0.04^{+0.15}_{-0.04}$	$0.12^{+0.13}_{-0.12}$	$0.16^{+0.09}_{-0.12}$	0.12 ± 0.10	$0.41^{+0.24}_{-0.22}$	0.12 ± 0.11	
	VVV	0.9 ± 0.9	$0.13^{+0.14}_{-0.13}$	$0.23^{+0.24}_{-0.23}$	0.4 ± 0.4	0.6 ± 0.6	0.6 ± 0.6	
	Higgs	$0.98^{+0.29}_{-0.30}$	0.13 ± 0.06	0.32 ± 0.11	$0.22^{+0.10}_{-0.11}$	0.28 ± 0.12	0.12 ± 0.06	
	Reducible	$4.0^{+1.5}_{-1.4}$	$0.40^{+0.27}_{-0.26}$	$4.1^{+1.3}_{-1.2}$	$1.9^{+0.9}_{-0.8}$	$5.7^{+2.1}_{-1.9}$	$0.9^{+0.5}_{-0.4}$	
	Total SM	14.1 ± 2.2	1.1 ± 0.4	$22.4^{+3.6}_{-3.4}$	16.4 ± 2.8	27 ± 5	$5.5^{+1.5}_{-1.4}$	
	Data	15	1	28	24	<u>← 20</u>	8	
	$p_0(\sigma)$	0.37 (0.33)	0.50	0.13 (1.12)	0.07 (1.50)	0.39 (0.28)	0.21 (0.82)	
	$N_{\rm exp}^{95}$	$9.6^{+3.9}_{-2.5}$	$3.7^{+1.5}_{-0.9}$	$12.7^{+4.9}_{-3.5}$	$11.3^{+4.5}_{-3.1}$	$13.8^{+5.4}_{-3.7}$	$6.9^{+2.9}_{-1.7}$	
	$N_{\rm obs}^{95}$	10.8	3.7	18.0	18.3	15.3	9.2	

ATLAS, Phys. Rev. D. 90, 052001 (2014)

Feb 11, 2014

ATLAS 32 Interpretations

Feb 11, 2014

Feb 11, 2014

CMS 32 Results

Excess due to 3l events with SFOS on-Z pair and large M_T

Feb 11, 2014

ATLAS Soft 2µ Excess

- Excess events with 2 soft muons, jets, and E_T^{miss}
 - N.B. excess gone in paper arXiv:1501.03555 [hep-ex]

ATLAS-CONF-2013-062

WW Excess

- Measured σ(pp→W⁺W⁻) exceeds theory prediction for both CMS and ATLAS, at 7 TeV and 8 TeV
 - W, Z, WZ, ZZ rates ~agree with theory
 - Explanation from higher order corrections (to jet veto acceptance) [1-4]?

Standard Model prediction: $58.7^{+1.0}_{-1.1}$ (PDF) $^{+3.1}_{-2.7}$ (total) pb

[1] Baglio et al, "Massive gauge boson pair production at the LHC: a next-to-leading order story"

- [2] Dawson et al, "Threshold Resummed and Approximate NNLO results for W⁺W⁻ Pair Production at the LHC"
- [3] Jaiswal and Okui, "An Explanation of the WW Excess at the LHC by Jet-Veto Resummation"
- [4] Monni and Zanderighi, "On the excess in the inclusive W+W-→ℓ+ℓ-vv cross section"

Feb 11, 2014

WW Excess

• The shapes agree, but the rates are high by ~20%:

Curtin, Jaiswal, Meade, "Charginos Hiding in Plain Sight
 Curtin et. al, "Casting Light on BSM Physics with SM Standard Candles"

[3] Rolbiecki and Sakurai, "Light stops emerging in WW cross section measurements?"[4] Kim et. al, "Stop' that ambulance! New physics at the LHC?"

Feb 11, 2014

Light Stops?

• Possible explanation for WW, SUSY 31 and soft 21 excesses?

Kim et. al, "'Stop' that ambulance! New physics at the LHC?"

Feb 11, 2014

Chicagoland Workshop

17

Perform likelihood analysis of several CMS/ATLAS searches avtract most likely SUSY particle masses

 \rightarrow extract most likely SUSY particle masses

ATLAS Stop 12 Search

Feb 11, 2014

22 + soft-b Analysis

- Test for stops in WW cross section measurement
- Difference between signal (stops) vs. bkg (WW) is presence of soft b-jets
- Add requirement of ≥1 soft
 b-jet to WW-like selection
- Need soft (p_T ≥ 10 GeV)
 b-tagging → track-jets

Summary of Excesses

March 2015

Search	Dataset	Max Significance	Reference
Dilepton mass edge	CMS 8 TeV	2.6σ	CMS-PAS-SUS-12-019
WW cross section	CMS 7 TeV	1.0σ	EPJC 73 2610 (2013)
WW cross section	CMS 8 TeV	1.7σ	PLB 721 (2013)
32+E _T ^{miss} electroweak SUSY	CMS 8 TeV	~2σ	EPJC 74 (2014) 3036
42+E _T ^{miss} electroweak SUSY (see backup)	CMS 8 TeV	~3σ	PRD 90, 032006 (2014)
Higgs $\rightarrow \mu \tau$ (lepton flavor violation)	CMS 8 TeV	2.5σ	CMS-PAS-HIG-14-005
1 st gen. leptoquarks (eejj / evjj channels)	CMS 8 TeV	2.6σ / 2.4σ	CMS-PAS-EXO-12-041
ttH with same-sign muons	CMS 8 TeV	$\mu_{ttH} = 8.5^{+3.5}_{-2.7}$	arXiv:1408.1682v1 [hep-ex]
Dijet resonance search	CMS 8 TeV	~2σ	arXiv:1501.04198 [hep-ex]
Heavy right-handed neutrinos	CMS 8 TeV	2.8σ	EPJC 74 (2014) 3149
3l+E _T ^{miss} electroweak SUSY	ATLAS 8 TeV	2.2σ	PRD 90, 052001 (2014)
Soft 22+E _T ^{miss} strong SUSY	ATLAS 8 TeV	2.3σ	ATLAS-CONF-2013-062
WW cross section	ATLAS 7 TeV	1.4σ	PRD 87, 112001 (2013)
WW cross section	ATLAS 8 TeV	2.0σ	ATLAS-CONF-2014-033
Z+jets+E _T ^{miss}	ATLAS 8 TeV	3.0σ	arXiv:1503.03290 [hep-ex]
Monojet search	ATLAS 8 TeV	1.7σ	arXiv:1502.01518 [hep-x]
H→h(bb)h(γγ)	ATLAS 8 TeV	2.4σ	arXiv:1406.5053 [hep-ex]

Feb 11, 2014

Additional Material

CMS 3l + τ Excess

Feb 11, 2014

ATLAS Cross-check

ATLAS Soft 22 Results

ATLAS-CONF-2013-062

	soft dimuon 2-jet
Observed events	7
Fitted background events	1.6 ± 1.0
Fitted <i>t</i> events	1.2 ± 1.0
Fitted W+jets events	-
Fitted diboson events	0.4 ± 0.3
Fitted misidentified lepton events	$0.0^{+0.3}_{-0.0}$
Fitted other background events	$0.01^{+0.06}_{-0.01}$
MC expected SM events	1.9 ± 1.2
MC expected $t\bar{t}$ events	1.5 ± 1.2
MC expected W+jets events	-
MC expected diboson events	0.4 ± 0.3
data-driven misidentified lepton events	$0.0^{+0.3}$
MC expected other background events	$0.01\substack{+0.06\\-0.01}$

		soft single-lepton	soft dimuon	
	3-jet	5-jet	2-jet	
N_{ℓ}		l (electron or muon)	2 (muons)	
$p_{\rm T}^{\ell}({\rm GeV})$	[10,25]	(electron), [6,25] (muon)	[6,25]	
$p_{\mathrm{T}}^{\mathrm{add.}\ \ell}$ (GeV)		< 7 (electron), <	6 (muon)	
$m_{\mu\mu}$ (GeV)	-	-	>15 and $ m_{\mu\mu} - m_Z > 10$	
N _{jet}	[3,4]	≥ 5	≥ 2	
$p_{\rm T}^{\rm leading jet}({\rm GeV})$		> 180	>70	
$p_{\rm T}^{\rm subleading jets}({\rm GeV})$		> 25		
N _{b-tag}	-	-	0	
$E_{\rm T}^{\rm miss}$ (GeV)	>400	>300	>170	
$m_{\rm T}~({\rm GeV})$	> 100		> 80	
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm incl}$		> 0.3	-	
$\Delta R_{\min}(\text{jet}, \ell)$	> 1.0 –		> 1.0	

arXiv:1501.03555 [hep-ex]

Soft dimuon

Observed events	6
Fitted background events	6.0 ± 2.6
$t\bar{t}$	1.8 ± 0.8
Other top quarks	0.24 ± 0.14
V+jets	0.28 ± 0.19
Diboson	1.4 ± 0.5
Fake leptons	$2.3^{+2.4}_{-2.3}$
Expected background events before the fit	6.8
$\overline{t\bar{t}}$	2.6
Other top quarks	0.24
V+jets	0.28
Diboson	1.4
Fake leptons	2.3

	Single-	Soft dimuon		
	3-jet	5-jet	3-jet inclusive	2-jet
N_{ℓ}		2 muons		
$p_{\rm T}^{\ell}[{\rm GeV}]$	[7,25	5] for electron, $[6,25]$ for	muon	[6,25]
Lepton veto	No additiona	l electron or muon with	$p_{\rm T} > 7 \text{ GeV or } 6$	GeV, respectively
$m_{\mu\mu}$ [GeV]	—	_	—	[15,60]
$N_{\rm jet}$	[3,4]	≥ 5	≥ 3	≥ 2
$p_{\rm T}^{\rm jet}[{\rm GeV}]$	> 180, 25, 25	> 180, 25, 25, 25, 25	> 130, 100, 25	> 80, 25
N_{b-tag}	_	_	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	>400 >300		>	180
$m_{\rm T}$ [GeV]		> 100	>120	> 40
$E_{ m T}^{ m miss}/m_{ m eff}^{ m incl}$	>	0.3(0.1)	> 0.1	> 0.3
$\Delta R_{\min}(\text{jet}, \ell)$	> 1.0	-	-	$> 1.0 \ (2^{\rm nd} \ {\rm muon})$
Binned variable		-		
Bin width		-		

Feb 11, 2014