Discovering a cosmologically motivated
2HDM at the LHC via A0→Z H0

G. C. Dorsch, S. J. Huber, K. Mimasu, J. M. No

Phys.Rev.Lett 113 (2014) 211802 arXiv:1405.5537 [hep-ph]

> NExT Meeting, UCL 29th April 2015

Introduction/Motivation

- Strongly first order electroweak phase transition (EWPT) and Baryogenesis
- 2HDM as a viable candidate to provide this EWPT
- LHC phenomenology
	- The 'smoking gun' signature of $A_0 \rightarrow Z H_0$
	- Motivating the search in the bbll and WWll **̅** [→] 4l 2**ν** channels
	- Detailed, detector level analysis of two benchmark scenarios at the LHC
	- Promising discovery prospects, both with current data and the upcoming run
- Conclusion & Outlook

EW phase transition

- The Standard Model is unable to account for the baryon asymmetry of the universe
- Sakharov conditions: C, CP, B violating interactions occurring out of thermal equilibrium in the early universe
	- B violating interactions unsuppressed at temperatures above EW scale √
	- EW phase transition (PT) must be first order (discontinuous) in order for the generated asymmetry to not be washed out.
	- SM predicts a second order phase transition for $m_h \ge m_W X$
	- Insufficient CP violation X

EW phase transition

- A strongly first order PT is a requirement for EW baryogenesis
- It is natural to focus on extending the bosonic sector due to their contributions to the thermal effective potential
- The Two Higgs Doublet Model (2HDM) can provide this
	- Adds new bosonic degrees of freedom which contribute in a way that is conducive to a strong first order EWPT
	- Potentially new sources of CP violation
	- One of the simplest extensions to the scalar sector of the SM
	- Testable at the LHC
	- Provides a connection between cosmology and collider physics

[G. C. Dorsch, S. J. Huber, J. M. No; JHEP 1310 (2013) 029]

The 2HDM

- Add one $SU(2)_L$ scalar doublet to the SM
- Simple, well motivated extension of the Standard Model
	- Scalar sector of the SM is the source of many of its potential issues regarding naturalness, hierarchy problem, vacuum stability etc.
	- The Brout-Englert-Higgs mechanism can be seen as a minimal parametrisation for the generation of mass and the unitarisation of vector boson scattering
	- Arises in well known BSM scenarios (i.e. MSSM, composite Higgs)
- Leads to a generalised scalar potential + Yukawa sector
	- Z2 symmetry imposed to avoid tree level FCNCs
- Both doublets can share the role of EW symmetry breaking
- Complex parameters in the potential \rightarrow CP violation
	- We have considered the CP violating case for simplicity
	- Not important for phase transition but clearly relevant for subsequent baryogenesis

The 2HDM

- CP conserving, softly broken Z_2 -symmetric potential
	- 8 free parameters

$$
V'_{s}(\Phi_{1}, \Phi_{2}) = -\mu_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} - \mu_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{\mu^{2}}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.)
$$

+ $\frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2})$
+ $\lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{2}) + \frac{\lambda_{5}}{2} ((\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.)$

- EW minimum defines $tan \beta$, the ratio of the vevs
	- Mixing angle rotating to a basis where one field gets the whole vev
- ^Φ' 1: SM Higgs, h, and 3 Goldstone bosons eaten by W and Z
- ^Φ' 2
	- Upper component charged scalar states: H^{\pm}
	- Lower component two additional neutral (CP even and odd) states: H_0 , A₀

The 2HDM

- CP even scalar states, h and H_0 , will mix with angle α, assume the lightest of the two should correspond to the recently observed Higgs-like state with mass m_h =125 GeV
- Minimisation conditions and mass matrix diagonalisation
	- Trade parameters in the potential for physical masses and mixing angles
	- Leaving 6 free parameters: m_{H_0} , m_{A_0} , $m_{H^{\pm}}$, μ , α , $\tan\beta$
- Gauge interactions of the scalar sector are characterised by the quantities $sin(\alpha-\beta)$ and $cos(\alpha-\beta)$; $\alpha-\beta=0$ means light Higgs is SM-like
- Yukawa interactions determined by the parity assignments of RH fermions
	- By convention parity of up type quark matches that of Φ_2
	- MSSM corresponds to Type II

- We focus on the type 1 2HDM
	- All fermions couple to the same doublet
	- No lower bound on the charged Higgs mass from flavour constraints
- EWPT insensitive to the 2HDM model type
	- By convention, the top quark always couples to the same doublet and is the only fermion with appreciable couplings to the scalar sector
	- Other fermionic contributions to the thermal effective potential are negligible
	- Only experimental constraints differ between model types
- We investigate the viable 2HDM parameter space for a strong EW phase transition
	- Incorporate experimental constraints
	- Link to potential LHC signatures

- Parameter space large enough to motivate scan
- Numerical code interfaced with 2HDMC and HiggsBounds/HiggsSignals
	- Select points that satisfy tree-level unitarity, perturbativity
	- EW precision constraints
	- Collider bounds from light Higgs data and heavy scalar searches
	- Direct exclusions from LEP, Tevatron & LHC (NWA)
	- Higgs signal strength measurements from Tevatron & LHC as of March 2014
	- Flavour constraints from $b \rightarrow s \gamma$ taken into account
	- Cross check limits on α and tan β from a global fit of light Higgs properties performed in *[C.- Y. Chen, S. Dawson M. Sher; PRD 88 (2013) 015018]*
- Satisfaction of the above conditions defines a 'physical' point

- The strength of the EWPT is evaluated for each physical point
	- Point at which the thermal 1-loop effective potential has two degenerate minima at 0 and $v_c \rightarrow$ critical temperature T_C
	- Strong PT determined by $v_C/T_C > 1$

Pass physicality constraints

- SM-like light Higgs is preferred
	- low α - β and moderate tan β
	- Mass splitting \sim v between A₀ and H_{0,}
	- m_{A_0} > 300 GeV
- Alignment limit

- Naturally preferred by experimental constraints
- Reinforced by strong first order PT requirement
	- As m_{H0} increases, the range of preferred α - β narrows
	- Away from the alignment limit $(α$ -β=0), both CP even scalar states 'share' the EW vev and participate in the EWPT
	- PT gets weaker as these states become heavier

- Requiring a strong first order EWPT points to a very different kind of 2HDM than commonly considered
- Typical analyses are relatively 'SUSY-oriented'
	- Near-degenerate spectrum
- Dimensionful parameters, v and mu, set the scale
	- Scalar mass splittings are driven by the self couplings, λ_i
	- e.g. in SUSY these are typically much less than v, decreasing as the overall scale increases
	- A preference for substantial splittings points towards strongly coupled theories as UV completions of such a scenario

Pheno consequences

- Large splittings are preferred, along with a heavy CP-odd scalar state, relatively light 2nd CP even state and a SMlike Higgs
- Opens new decay channels not previously considered
	- Heavy Higgs searches focus mostly on gauge bosons decay modes (WW, ZZ)
	- These channels are not permitted for the A_0 by CP
	- Difficult to look for in t, b final states
	- Pseudoscalar searches are currently limited to $A_0 \rightarrow Z h$, $\tau \tau$
- Most importantly, the $S_i \rightarrow VS_i$ opens
	- $-V$ is a vector boson (W^{\pm}, Z) and S_i is another heavy scalar (A_0, H_0, H^{\pm})
	- These channels are typically assumed to be kinematically forbidden

Pheno consequences

- Heavy pseudoscalar points to $A_0 \rightarrow ZH_0$
	- Coupling is not affected in the alignment limit \sim cos(α - β)
	- In contrast, $A_0 \rightarrow Zh$ vanishes, like gauge boson couplings to H₀ ~ $sin(\alpha-\beta)$
- Determine the LHC discovery prospects of this type of model
	- Choose benchmarks with parameters compatible with a strong first order EWPT and physicality requirements including direct searches
- $m_{H_0} = 180$, $m_{A_0} = 400$, $m_H^{\pm} = 400$, $\mu = 100$ [GeV]
	- $-$ tanβ=2 controls the gg→A₀ production rate via top couplings
	- Focus on both the aligned and non-aligned scenarios i.e. $\alpha-\beta=$ 0.001π, 0.1π
	- The search strategy is then dictated by the preferred decay mode of H_0

A0 decay modes

- Other competing decay channels are tt**̄**and W±H[∓]
	- The **tt** channel goes as (tanβ)⁻²
	- Availability of $W^{\pm}H^{\mp}$ depends on m_H^{\pm}
	- EWPO constrain the charged Higgs to be close in mass to one or the other heavy scalar
	- We choose to have it pair with A_0 and close the channel for simplicity
	- Its presence will roughly halve $BR(ZH_0)$

H_o decay modes

- Clear preference for bb and WW in the respective scenarios
	- hh decay mode increases with μ and can dominate when kinematically available (more difficult to satisfy constraints)
	- We considered leptonic decays of Z and W
	- A: bbll final state
	- B: WWII →4l 2_v final state

LHC analysis

- The type I 2HDM was implemented using FeynRules
	- Including an effective dimension-5 operator for production via gluon fusion
- Signal + backgrounds generated using Madgraph5_aMC@NLO
	- Events passed on to Pythia for parton showering and hadronisation
	- Delphes used for LHC detector simulation
- Perform a 'cut and count' analysis on a small set of kinematical variables to extract the signal over the background
	- Use NLO k-factors for signal and dominant backgrounds to approximate the most significant radiative corrections
	- Obtained from literature for backgrounds, used SusHi for signal

A0→ZH0→bbll **̅**

- Given the potential sensitivity already at 7 and 8 TeV, one should expect that the 13 TeV run be promising *[B. Coleppa, F. Kling, S.Su; arXiv:1404.1922]*
- Main irreducible backgrounds are Zbb, tt, ZZ and Zh
- Straightforward event selection
	- Anti- k_T jets with distance parameter $R=0.6$
	- 2 b-tagged jets; $|\eta|$ < 2.5
	- Tagging efficiency modelled as a function of p_T and η as per *[CMS-PAS-BTV-13-001]*
	- 2 isolated, same flavour leptons (within a cone of 0.3); $|\eta| < 2.5(2.7)$ for electrons (muons)
	- P_T ¹>40 GeV, P_T ²>20 GeV

$A_0 \rightarrow ZH_0 \rightarrow b\overline{b}$ ll **̅**

• Kinematical cuts

- Leptons should reconstruct mz
- 2 cuts on total $H_T = \sum P_T$, with and without the leptons
- $\Delta R^2 = \Delta \eta^2 + \Delta \Phi^2$ between bb and ll

A0→ZH0→bbll **̅**

- **Observables: invariant masses of the bb and the bbll** systems
	- Energy losses due to imperfect reconstruction and finite resolution occur
	- m_{bb} within (m_{H0} 20) \pm 30 GeV; m_{bbll} within (m_{A0} 20) \pm 40 GeV
	- Statistical-only significance of 5 with $L=20$ fb⁻¹
	- Assuming 10% uncertainty on background (CLs) \rightarrow L=40 fb⁻¹

14 TeV LHC $L = 20$ fb⁻¹

KM 29/04/2015

WWll→4l 2**ν**

- Away from the alignment limit, bbll will be dominated by $A \rightarrow Zh$ but altogether quite low due to the small BR(Zh)
- WWII is one of the most promising channels to look in this limit (tri-Z \rightarrow 4l 2j has also been shown to be powerful)
- Main background is $ZZ \rightarrow 4l$ + rare: Ztt, Zh and ZWW
- Employ similar selection to bbll analysis
	- 4 isolated leptons in SF pairs; $|\eta|$ < 2.5(2.7) for electrons (muons)
	- P_T ¹>40 GeV, P_T ^{2,3,4}>20 GeV
	- Require one pair to reconstruct the Z mass as in bbll
- No further selection required
	- Other handles such as ΔR or a Z-veto on the remaining lepton pair could reduce the background more but were deemed unnecessary

WWll→4l 2**ν**

- Signal 0.93, fb ZZ- 5.6 fb, all rare 0.25 fb post selection
- Since there are two neutrinos, some information about their momenta (even transverse) cannot be fully deduced
	- Construct transverse mass variables that should be sensitive to the two scalar masses

$$
(m_T^{\ell\ell})^2 = (\sqrt{p_{T,\ell\ell}^2 + m_{\ell\ell}^2} + p_T)^2 - (\vec{p}_{T,\ell\ell} + \vec{p}_T)^2
$$

$$
m_T^{4\ell} = \sqrt{p_{T,\ell'\ell'}^2 + m_{\ell'\ell'}^2} + \sqrt{p_{T,\ell\ell}^2 + (m_T^{\ell\ell})^2}
$$

 $L = 60$ fb⁻¹

WWll→4l 2**ν**

- A single cut on m^{4} > 260 GeV allows for signal extraction
- Signal 0.88 fb vs bkg 1.39 fb
- Statistics-only significance of 5 is reached with 60 fb⁻¹ of data
- Incorporating the 10% background uncertainty increases this to 200 fb $^{-1}$
- Very low background situation
	- May be prudent to investigate reducible backgrounds further
- Overall promising prospects at the early stages of the new LHC run

- The 2HDM is a simple, testable extension of the SM that has the capacity to provide the strong first order phase transition required by EW baryogenesis
- Explored the parameter space employing current experimental and theoretical constraints finding that a strong EWPT prefers
	- $-$ SM like Higgs $+$ Heavy A_{0,}
	- Large mass splitting $\sim v$ between A₀ and H₀
- This points to a very particular type of 2HDM with a 'smoking gun' signature of $A_0 \rightarrow ZH_0$
- Described a detector-level analysis of two possible final states preferred in and out of alignment
	- Simple 'cut and count' method
	- Allows for discovery at the early stages of LHC run 2

- A nice connection between cosmology and testable LHC phenomenology
	- These results motivate taking this search seriously at the LHC
- We aim to extend this work beyond the analysis of two benchmark points
	- Aim for the LHC sensitivity in the m_A - m_H plane
- Further investigate the sensitivity of current data to this model
	- Fully reinterpret the light Higgs analyses to obtain extra constraints on parameter space
	- 4 lepton + MET (SUSY)
- Include the $A_0 \rightarrow H^{\pm}W^{\mp}$ channel
- Include CP violation
- Two-loop thermal effective potential

Experimental limits

• EW precision observables

- Additional SU(2)_L doublets automatically preserve the custodial symmetry of the EW vacuum
- W/Z mass relationship preserved at tree level
- At loop level, mass splittings between the scalar states induce contributions to the T parameter
- FCNCs
	- Strongest bounds come from $B \rightarrow X_s \gamma$ and B_0 - \overline{B}_0 mixing
	- Constrains the m H^{\pm} , tan β plane (Type II: m H^{\pm} > 360 GeV)
- LHC
	- Measurements of the properties of the newly observed Higgs will constrain the mixing angles
	- Searches of additional scalar states will also provide bounds dependent on the full set of parameters

bbll final state **̅**

- Both SM Higgs production and $A_0 \rightarrow Z$ h can have same final states
	- For the SM, associated \ll resonant production
	- In the regions of interest $A_0 \rightarrow Zh$ is suppressed by a combination of the pseudoscalar and SM Higgs BRs
	- An initial contamination of \leq few % can be discarded considering that our signal region targets heavier objects

LHC analysis

- Higgs properties are being measured in a variety of production mechanisms: current data may already be sensitive to the signatures of this model
- Considered current 8 TeV LHC data in one analysis for bbll
- At 14 TeV, determined the required luminosity to achieve a statistical significance of 5
	- Statistical uncertainties only: $S/\sqrt{(S+B)}$
	- Assuming a 10% total uncertainty on the background expectation, marginalised over as a nuisance parameter using the CLs method

A0→ZH0→bbll **̅**

- Search for the bb decay mode of the SM Higgs produced in association with a W or Z *[ATLAS-CONF-2013-079]*
	- Defines signal regions according to number of leptons, additional jets
	- Splits them according to the p_T of the II system (no $m_{b\bar{b}}$ requirement)
	- Global fit extracts the background normalisations and signal strength of a SM Higgs with mass 125 GeV
- p_T ^{II} in our signal set by m_{A0} - m_{H0}
	- Heavy A_0 means the signal will predominantly populate the boosted kinematical region
	- Low backgrounds and SM Higgs expectation
	- Reproducing the analysis and using the most powerful signal region gives a statistical-only significance close to 3

A0→ZH0→bbll **̅**

KM 29/04/2015