Discovering a cosmologically motivated 2HDM at the LHC via $A_0 \rightarrow Z H_0$

G. C. Dorsch, S. J. Huber, K. Mimasu, J. M. No

Phys.Rev.Lett 113 (2014) 211802 arXiv:1405.5537 [hep-ph]

NExT Meeting, UCL 29th April 2015

Introduction/Motivation

- Strongly first order electroweak phase transition (EWPT) and Baryogenesis
- 2HDM as a viable candidate to provide this EWPT
- LHC phenomenology
 - The 'smoking gun' signature of $A_0 \rightarrow Z H_0$
 - Motivating the search in the bbll and WWII \rightarrow 4I 2v channels
 - Detailed, detector level analysis of two benchmark scenarios at the LHC
 - Promising discovery prospects, both with current data and the upcoming run
- Conclusion & Outlook

EW phase transition

- The Standard Model is unable to account for the baryon asymmetry of the universe
- Sakharov conditions: C, CP, B violating interactions occurring out of thermal equilibrium in the early universe
 - B violating interactions unsuppressed at temperatures above EW scale

 ✓
 - EW phase transition (PT) must be first order (discontinuous) in order for the generated asymmetry to not be washed out.
 - SM predicts a second order phase transition for $m_h \ge m_W \nearrow$
 - Insufficient CP violation ×

EW phase transition

- A strongly first order PT is a requirement for EW baryogenesis
- It is natural to focus on extending the bosonic sector due to their contributions to the thermal effective potential
- The Two Higgs Doublet Model (2HDM) can provide this
 - Adds new bosonic degrees of freedom which contribute in a way that is conducive to a strong first order EWPT
 - Potentially new sources of CP violation
 - One of the simplest extensions to the scalar sector of the SM
 - Testable at the LHC
 - Provides a connection between cosmology and collider physics

[G. C. Dorsch, S. J. Huber, J. M. No; JHEP 1310 (2013) 029]

The 2HDM

- Add one $SU(2)_{L}$ scalar doublet to the SM
- Simple, well motivated extension of the Standard Model
 - Scalar sector of the SM is the source of many of its potential issues regarding naturalness, hierarchy problem, vacuum stability etc.
 - The Brout-Englert-Higgs mechanism can be seen as a minimal parametrisation for the generation of mass and the unitarisation of vector boson scattering
 - Arises in well known BSM scenarios (i.e. MSSM, composite Higgs)
- Leads to a generalised scalar potential + Yukawa sector
 - Z₂ symmetry imposed to avoid tree level FCNCs
- Both doublets can share the role of EW symmetry breaking
- Complex parameters in the potential \rightarrow CP violation
 - We have considered the CP violating case for simplicity
 - Not important for phase transition but clearly relevant for subsequent baryogenesis

The 2HDM

- CP conserving, softly broken Z₂-symmetric potential
 - 8 free parameters

$$\begin{aligned} V_s'(\Phi_1, \Phi_2) &= -\mu_1^2 \Phi_1^{\dagger} \Phi_1 - \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \frac{\mu^2}{2} (\Phi_1^{\dagger} \Phi_2 + h.c.) \\ &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \frac{\lambda_5}{2} \left((\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right) \end{aligned}$$

- EW minimum defines tanβ, the ratio of the vevs
 - Mixing angle rotating to a basis where one field gets the whole vev
- Φ'₁: SM Higgs, h, and 3 Goldstone bosons eaten by W and Z
- Φ'₂
 - Upper component charged scalar states: H[±]
 - Lower component two additional neutral (CP even and odd) states: H₀, A₀

The 2HDM

- CP even scalar states, h and H₀, will mix with angle α, assume the lightest of the two should correspond to the recently observed Higgs-like state with mass m_h=125 GeV
- Minimisation conditions and mass matrix diagonalisation
 - Trade parameters in the potential for physical masses and mixing angles
 - Leaving 6 free parameters: m_{H_0} , m_{A_0} , $m_{H^{\pm}}$, μ , α , $\tan\beta$
- Gauge interactions of the scalar sector are characterised by the quantities $sin(\alpha-\beta)$ and $cos(\alpha-\beta)$; $\alpha-\beta=0$ means light Higgs is SM-like
- Yukawa interactions determined by the parity assignments of RH fermions
 - By convention parity of up type quark matches that of Φ_2
 - MSSM corresponds to Type II

Type	u_R	d_R	e_R
Ι	+	+	+
II	+	_	
Х	+	+	_
Υ	+	—	+

- We focus on the type I 2HDM
 - All fermions couple to the same doublet
 - No lower bound on the charged Higgs mass from flavour constraints
- EWPT insensitive to the 2HDM model type
 - By convention, the top quark always couples to the same doublet and is the only fermion with appreciable couplings to the scalar sector
 - Other fermionic contributions to the thermal effective potential are negligible
 - Only experimental constraints differ between model types
- We investigate the viable 2HDM parameter space for a strong EW phase transition
 - Incorporate experimental constraints
 - Link to potential LHC signatures

- Parameter space large enough to motivate scan
- Numerical code interfaced with 2HDMC and HiggsBounds/HiggsSignals
 - Select points that satisfy tree-level unitarity, perturbativity
 - EW precision constraints
 - Collider bounds from light Higgs data and heavy scalar searches
 - Direct exclusions from LEP, Tevatron & LHC (NWA)
 - Higgs signal strength measurements from Tevatron & LHC as of March 2014
 - Flavour constraints from $b \rightarrow s\gamma$ taken into account
 - Cross check limits on α and tanβ from a global fit of light Higgs properties performed in [C.-Y. Chen, S. Dawson M. Sher; PRD 88 (2013) 015018]
- Satisfaction of the above conditions defines a 'physical' point

- The strength of the EWPT is evaluated for each physical point
 - Point at which the thermal I-loop effective potential has two degenerate minima at 0 and $v_{\rm C} \rightarrow {\rm critical temperature T_{\rm C}}$
 - Strong PT determined by $v_C/T_C > I$

physicality constraints

- SM-like light Higgs is preferred
 - low α-β and moderate tanβ
 - Mass splitting ~ v between A₀ and H₀,
 - m_{A0} > 300 GeV
- Alignment limit

- Naturally preferred by experimental constraints
- Reinforced by strong first order PT requirement
 - As m_{H_0} increases, the range of preferred α - β narrows
 - Away from the alignment limit (α - β =0), both CP even scalar states 'share' the EW vev and participate in the EWPT
 - PT gets weaker as these states become heavier

- Requiring a strong first order EWPT points to a very different kind of 2HDM than commonly considered
- Typical analyses are relatively 'SUSY-oriented'
 - Near-degenerate spectrum
- Dimensionful parameters, v and mu, set the scale
 - Scalar mass splittings are driven by the self couplings, λ_i
 - e.g. in SUSY these are typically much less than v, decreasing as the overall scale increases
 - A preference for substantial splittings points towards strongly coupled theories as UV completions of such a scenario

Pheno consequences

- Large splittings are preferred, along with a heavy CP-odd scalar state, relatively light 2nd CP even state and a SMlike Higgs
- Opens new decay channels not previously considered
 - Heavy Higgs searches focus mostly on gauge bosons decay modes (WW, ZZ)
 - These channels are not permitted for the A₀ by CP
 - Difficult to look for in t, b final states
 - Pseudoscalar searches are currently limited to $A_0 \rightarrow Zh$, $\tau\tau$
- Most importantly, the $S_i \rightarrow VS_j$ opens
 - V is a vector boson (W[±], Z) and S_i is another heavy scalar (A₀, H₀, H[±])
 - These channels are typically assumed to be kinematically forbidden

Pheno consequences

- Heavy pseudoscalar points to $A_0 \rightarrow ZH_0$
 - Coupling is not affected in the alignment limit $\sim \cos(\alpha \beta)$
 - In contrast, $A_0 \rightarrow Zh$ vanishes, like gauge boson couplings to $H_0 \sim sin(\alpha \beta)$
- Determine the LHC discovery prospects of this type of model
 - Choose benchmarks with parameters compatible with a strong first order EWPT and physicality requirements including direct searches
- $m_{H_0} = 180, m_{A_0} = 400, m_H^{\pm} = 400, \mu = 100 \text{ [GeV]}$
 - $\tan\beta=2$ controls the gg $\rightarrow A_0$ production rate via top couplings
 - = Focus on both the aligned and non-aligned scenarios i.e. α - β = 0.001 π , 0.1 π
 - The search strategy is then dictated by the preferred decay mode of H_{0}

A₀ decay modes

- Other competing decay channels are $t\bar{t}$ and $W^{\pm}H^{\mp}$
 - The tt
 t
 channel goes as (tanβ)⁻²
 - Availability of W[±]H[∓] depends on m_H[±]
 - EWPO constrain the charged Higgs to be close in mass to one or the other heavy scalar
 - We choose to have it pair with A_0 and close the channel for simplicity
 - Its presence will roughly halve BR(ZH₀)

H₀ decay modes

- Clear preference for bb and WW in the respective scenarios
 - hh decay mode increases with µ and can dominate when kinematically available (more difficult to satisfy constraints)
 - We considered leptonic decays of Z and W
 - A: bbll final state
 - B: WWII \rightarrow 4I 2v final state

LHC analysis

- The type I 2HDM was implemented using FeynRules
 - Including an effective dimension-5 operator for production via gluon fusion
- Signal + backgrounds generated using Madgraph5_aMC@NLO
 - Events passed on to Pythia for parton showering and hadronisation
 - Delphes used for LHC detector simulation
- Perform a 'cut and count' analysis on a small set of kinematical variables to extract the signal over the background
 - Use NLO k-factors for signal and dominant backgrounds to approximate the most significant radiative corrections
 - Obtained from literature for backgrounds, used SusHi for signal

- Given the potential sensitivity already at 7 and 8 TeV, one should expect that the 13 TeV run be promising [B. Coleppa, F. Kling, S.Su; arXiv: 1404.1922]
- Main irreducible backgrounds are Zbb, tt, ZZ and Zh
- Straightforward event selection
 - Anti-k_T jets with distance parameter R=0.6
 - 2 b-tagged jets; |η| < 2.5
 - Tagging efficiency modelled as a function of p_T and η as per [CMS-PAS-BTV-13-001]
 - 2 isolated, same flavour leptons (within a cone of 0.3); |η| < 2.5(2.7) for electrons (muons)
 - P_T¹>40 GeV, P_T²>20 GeV

k-factor:	1.6	1.5	1.4	-	-
	Signal	$t\bar{t}$	$Z b \overline{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell \rm bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

Kinematical cuts

- Leptons should reconstruct m_Z
- 2 cuts on total $H_T = \Sigma P_T$, with and without the leptons
- $\Delta R^2 = \Delta \eta^2 + \Delta \Phi^2$ between $b\bar{b}$ and II

- Observables: invariant masses of the bb and the bbll systems
 - Energy losses due to imperfect reconstruction and finite resolution occur
 - m_{bb} within $(m_{H0} 20) \pm 30$ GeV; m_{bbll} within $(m_{A0} 20) \pm 40$ GeV
 - Statistical-only significance of 5 with L=20 fb⁻¹
 - Assuming 10% uncertainty on background (CLs) → L=40 fb⁻¹

14 TeV LHC L= 20 fb⁻¹

KM 29/04/2015

20

$VVVII \rightarrow 4I 2v$

- Away from the alignment limit, bbll will be dominated by A→Zh but altogether quite low due to the small BR(Zh)
- WWII is one of the most promising channels to look in this limit (tri-Z →4l 2j has also been shown to be powerful)
- Main background is $ZZ \rightarrow 4I + rare: Ztt, Zh and ZWW$
- Employ similar selection to bbll analysis
 - 4 isolated leptons in SF pairs; $|\eta| < 2.5(2.7)$ for electrons (muons)
 - $P_T^{1}>40 \text{ GeV}, P_T^{2,3,4}>20 \text{ GeV}$
 - Require one pair to reconstruct the Z mass as in bbll
- No further selection required
 - Other handles such as ΔR or a Z-veto on the remaining lepton pair could reduce the background more but were deemed unnecessary

$VVVII \rightarrow 4I 2v$

- Signal 0.93, fb ZZ- 5.6 fb, all rare 0.25 fb post selection
- Since there are two neutrinos, some information about their momenta (even transverse) cannot be fully deduced
 - Construct transverse mass variables that should be sensitive to the two scalar masses

$$(m_T^{\ell\ell})^2 = (\sqrt{p_{T,\ell\ell}^2 + m_{\ell\ell}^2} + \not\!\!p_T)^2 - (\vec{p}_{T,\ell\ell} + \vec{p}_T)^2$$
$$m_T^{4\ell} = \sqrt{p_{T,\ell'\ell'}^2 + m_{\ell'\ell'}^2} + \sqrt{p_{T,\ell\ell}^2 + (m_T^{\ell\ell})^2}$$

I4 TeV LHC L= 60 fb⁻¹

KM 29/04/2015

$VVVII \rightarrow 4I 2v$

- A single cut on $m^{4l} > 260$ GeV allows for signal extraction
- Signal 0.88 fb vs bkg 1.39 fb
- Statistics-only significance of 5 is reached with 60 fb⁻¹ of data
- Incorporating the 10% background uncertainty increases this to 200 fb⁻¹
- Very low background situation
 - May be prudent to investigate reducible backgrounds further
- Overall promising prospects at the early stages of the new LHC run

- The 2HDM is a simple, testable extension of the SM that has the capacity to provide the strong first order phase transition required by EW baryogenesis
- Explored the parameter space employing current experimental and theoretical constraints finding that a strong EWPT prefers
 - SM like Higgs + Heavy A_{0,}
 - Large mass splitting ~ v between A₀ and H₀
- This points to a very particular type of 2HDM with a 'smoking gun' signature of $A_0 \rightarrow ZH_0$
- Described a detector-level analysis of two possible final states preferred in and out of alignment
 - Simple 'cut and count' method
 - Allows for discovery at the early stages of LHC run 2

- A nice connection between cosmology and testable LHC phenomenology
 - These results motivate taking this search seriously at the LHC
- We aim to extend this work beyond the analysis of two benchmark points
 - Aim for the LHC sensitivity in the m_A-m_H plane
- Further investigate the sensitivity of current data to this model
 - Fully reinterpret the light Higgs analyses to obtain extra constraints on parameter space
 - 4 lepton + MET (SUSY)
- Include the $A_0 \rightarrow H^{\pm}W^{\mp}$ channel
- Include CP violation
- Two-loop thermal effective potential

Experimental limits

EW precision observables

- Additional SU(2)_L doublets automatically preserve the custodial symmetry of the EW vacuum
- W/Z mass relationship preserved at tree level
- At loop level, mass splittings between the scalar states induce contributions to the T parameter
- FCNCs
 - Strongest bounds come from $B \rightarrow X_S \gamma$ and $B_0 \overline{B}_0$ mixing
 - Constrains the $m_{H^{\pm}}$, tan β plane (Type II: $m_{H^{\pm}}$ 360 GeV)
- LHC
 - Measurements of the properties of the newly observed Higgs will constrain the mixing angles
 - Searches of additional scalar states will also provide bounds dependent on the full set of parameters

bbll final state

- Both SM Higgs production and A₀→Zh can have same final states

 - In the regions of interest A₀ → Zh is suppressed by a combination of the pseudoscalar and SM Higgs BRs
 - An initial contamination of < few % can be discarded considering that our signal region targets heavier objects

LHC analysis

- Higgs properties are being measured in a variety of production mechanisms: current data may already be sensitive to the signatures of this model
- Considered current 8 TeV LHC data in one analysis for bbll
- At 14 TeV, determined the required luminosity to achieve a statistical significance of 5
 - Statistical uncertainties only: $S/\sqrt{(S+B)}$
 - Assuming a 10% total uncertainty on the background expectation, marginalised over as a nuisance parameter using the CLs method

- Search for the bb decay mode of the SM Higgs produced in association with a W or Z [ATLAS-CONF-2013-079]
 - Defines signal regions according to number of leptons, additional jets
 - Splits them according to the p_T of the II system (no $m_{b\bar{b}}$ requirement)
 - Global fit extracts the background normalisations and signal strength of a SM Higgs with mass 125 GeV
- p_T^{\parallel} in our signal set by m_{A0} - m_{H0}
 - Heavy A₀ means the signal will predominantly populate the boosted kinematical region
 - Low backgrounds and SM Higgs expectation
 - Reproducing the analysis and using the most powerful signal region gives a statistical-only significance close to 3

