What is the mass scale of the 2nd Higgs boson?

Based on

- S. Kanemura, K. Tsumura, KY, H. Yokoya, PRD90, 075001 (2014)
- S. Moretti, and KY, PRD91, 055022 (2015)

29th, April, 2015 University College of London

LHC Run-I Tells Us

- 1. There exits one CP-even scalar boson
 - → At least 4 d.o.f. of scalar state (3 NGBs and h)
- Its mass is about 125 GeV.
 - → Consistent w/ EW precision tests

- ☐ This suggests that there is at least one isospin doublet scalar field.
- ☐ The SM Higgs sector is the minimal realization.

Questions for the Higgs Sector

- What is the **structure** of the Higgs sector?
 - the number of multiplets, representations, symmetries, ...
- What is the **relation** to the BSM phenomena?
 - Neutrino mass, dark matter, baryon number asymmetry, ...

Property of the Higgs sector can strongly depends on new physics scenarios.

→ Higgs is a probe of New Physics!!

Higgs as a Probe of New Physics

Implication of non-zero mixing

Non-zero mixing between h and extra Higgs bosons

Higgs coupling deviations

and

Upper limit on the 2nd Higgs mass!

In this talk, I discuss S-matrix unitarity to give the upper bound.

Contents

- Introduction
 - Relationship between Higgs coupling deviations & Higgs mass bound
- S matrix Unitarity and its application to Higgs mass bounds
 - SM, 2HDM, 3HDM
- Deviations in the SM-like Higgs boson couplings

Summary

S matrix Unitarity

S matrix unitarity: $S^\dagger S = S S^\dagger = 1$

$$\sigma_{
m tot} = rac{1}{s} {
m Im}\, {\cal M}(heta = 0)$$

Using the partial wave expansion:

$$\mathcal{M} = 16\pi \sum_{J=0}^{\infty} (2J+1) P_J(\cos\theta) a_J$$

we obtain

$$\operatorname{Re}(a_J^{2\to 2})^2 + [\operatorname{Im}(a_J^{2\to 2}) - 1/2]^2 = (1/2)^2$$

for $2\rightarrow 2$ elastic scatterings.

$$|\mathrm{Re}(a_J^{2 o 2})| < 1/2$$

at the tree level.

$W_L^+W_L^- \rightarrow W_L^+W_L^-$ scattering in SM

Lee, Quigg, Thacker (1977)

$$a_0 \sim \frac{m_h^2}{8\pi v^2} \left(=\frac{\lambda}{4\pi}\right) + O(g^2)$$

From $|a_0| < 1/2$, we get

mh < 870 GeV

$$a_0 \sim -a E^2 + O(E^0)$$

Equivalence Theorem

Cornwall, Levin, Tiktopoulos (1974)

In the high energy limit, we can replace W_L^{\pm} , Z_L^{0} by G^{\pm} , G^{0} .

Equivalence Theorem

Cornwall, Levin, Tiktopoulos (1974)

In the high energy limit, we can replace W_L^{\pm} , $Z_L^{\,0}$ by G^{\pm} , G^0 .

Diagonalization of the S-wave matrix

■ There are not only $W_L^+W_L^-$ state, but also Z_LZ_L , hh, Z_Lh (neutral), $W_1 \pm Z_1$, $W_1 \pm h$ (singly-charged) and $W_1 \pm W_1 \pm h$ (doubly-charged) states.

Ginzburg, Ivanov (2003)

■ In the E $\rightarrow \infty$ limit, we can classify all the orthogonal 2 body states by T, T₃ and Y.

$$\Phi \otimes \Phi \text{ (Y=1)}$$

$$T=1 \begin{cases} \phi^{+}\phi^{+} & (T_{3}=1) \\ \phi^{+}\phi^{0} & (T_{3}=0) \\ \phi^{0}\phi^{0} & (T_{3}=-1) \end{cases} = a_{0}=\lambda/8\pi$$

$$T=0 \qquad \text{Absent}$$

$$\begin{array}{c} \Phi\otimes\Phi\text{ (Y=1)} \\ \hline T=1 & \begin{cases} \phi^+\phi^+ & (T_3=1) \\ \phi^+\phi^0 & (T_3=0) \\ \phi^0\phi^0 & (T_3=-1) \end{cases} \\ a_0=\lambda/8\Pi \\ \hline T=0 & \text{Absent} \\ \end{array}$$

Application to the 2HDM

Let us consider the application of the unitarity bound to the 2HDM w/ a softly-broken Z_2 symmetry $(\Phi_1 \rightarrow + \Phi_1, \Phi_2 \rightarrow -\Phi_2)$.

- $lacktriangleq ext{Higgs doublets} \qquad \Phi_{\pmb{i}} = \left[\begin{array}{c} w_{\pmb{i}}^{ op} \\ \frac{1}{\sqrt{2}}(h_{\pmb{i}} + z_{\pmb{i}} + v_{\pmb{i}}) \end{array} \right] \;\; \text{, (i =1, 2)}$
- Mass eigenstates

$$\begin{pmatrix} w_1^{\pm} \\ w_2^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}, \quad \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = R(\beta) \begin{pmatrix} G^0 \\ A \end{pmatrix}, \quad \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = R(\alpha) \begin{pmatrix} H \\ h \end{pmatrix}$$

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Higgs potential in the 2HDM

 \Box The Higgs potential under the softly-broken Z_2 sym. and CP-invariance

$$\begin{split} V &= m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 [\Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \Big[(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \Big] \end{split}$$

■ We have 8 parameters in the potential. They can be interpreted by

ν (=246 GeV),
$$m_h$$
 (=125 GeV), $m_{H'}$ $m_{A'}$ m_{H+} , $sin(\beta-\alpha)$, $tan\beta$, and M^2 $M^2=m_3^2/(\sin\beta\cos\beta)$

□ Mass formulae with sin(β-a) ~1

$$m_h^2 \sim \lambda v^2$$
, $m_{\Phi}^2 \sim M^2 + \lambda' v^2$

$$\Phi = H^{\pm}$$
, A, H

- There are 14 neutral, 8 singly-charged and 3 doubly-charged states.
- The 2 body scalar states are classified in terms of Z_2 charge in addition to T, T_3 and Y.

$$\Phi_{1} \otimes \Phi_{1} \text{ (Y=1, Z}_{2} \text{ even)}$$

$$= \begin{bmatrix} \begin{pmatrix} w_{1}^{+}w_{1}^{+} \\ w_{2}^{+}w_{2}^{+} \end{pmatrix} \text{ (T}_{3}=1) \\ \begin{pmatrix} w_{1}^{+}\phi_{1}^{0} \\ w_{2}^{+}\phi_{2}^{0} \end{pmatrix} \text{ (T}_{3}=0) \\ \begin{pmatrix} \phi_{1}^{0}\phi_{1}^{0} \\ \phi_{2}^{0}\phi_{2}^{0} \end{pmatrix} \text{ (T}_{3}=-1) \end{bmatrix}$$

$$= 0 \qquad \text{Absent}$$

$$\begin{array}{c} \Phi_1 \otimes \Phi_2 \ (\text{Y=1, Z}_2 \ \text{odd}) \\ \\ T=1 \end{array} \left\{ \begin{array}{c} w_1^+ w_2^+ & (\text{T}_3=1) \\ \\ \frac{\phi_1^+ \phi_2^0 + \phi_1^0 \phi_2^+}{\sqrt{2}} & (\text{T}_3=0) \\ \\ \phi_1^0 \phi_2^0 & (\text{T}_3=-1) \\ \\ T=0 \end{array} \right. \\ \left. \begin{array}{c} \Phi_1^+ \phi_2^0 - \phi_1^0 \phi_2^+ \\ \\ \hline \sqrt{2} \end{array} \right.$$

■ In addition, there are $(Y=0, Z_2 \text{ even})$ and $(Y=0, Z_2 \text{ odd})$ states.

All the independent eigenvalues

Kanemura, Kubota, Takasugi (1993) [Diagonalized all the neutral channels]

Akeroyd, Arhrib, Naimi (2000) [Diagonalized all the singly-charged channels]

Ginzburg, Ivanov (2003) [Extended to the CPV 2HDM]

$$a_{1,\pm}^{0} = \frac{1}{32\pi} \left[3(\lambda_{1} + \lambda_{2}) \pm \sqrt{9(\lambda_{1} - \lambda_{2})^{2} + 4(2\lambda_{3} + \lambda_{4})^{2}} \right],$$

$$a_{2,\pm}^{0} = \frac{1}{32\pi} \left[(\lambda_{1} + \lambda_{2}) \pm \sqrt{(\lambda_{1} - \lambda_{2})^{2} + 4\lambda_{4}^{2}} \right],$$

$$a_{3,\pm}^{0} = \frac{1}{32\pi} \left[(\lambda_{1} + \lambda_{2}) \pm \sqrt{(\lambda_{1} - \lambda_{2})^{2} + 4\lambda_{5}^{2}} \right],$$

$$a_{4,\pm}^{0} = \frac{1}{16\pi} (\lambda_{3} + 2\lambda_{4} \pm 3\lambda_{5}),$$

$$a_{5,\pm}^{0} = \frac{1}{16\pi} (\lambda_{3} \pm \lambda_{4}),$$

$$a_{6,\pm}^{0} = \frac{1}{16\pi} (\lambda_{3} \pm \lambda_{5}).$$

Upper lim. of the 2nd Higgs mass

Constraint on the m_A vs m_H plane

Moretti, KY, PRD91 (2015)

- Bound on mH and mA is correlated .
- \Box Stronger constraint is obtained in the case with larger 1-sin(β -a).

Application to the 3HDM

☐ There are several versions of 3HDM Keus, King, Moretti, PRD91 (2015) depending on a symmetry of the potential

Grzadkowski, Ogreid, Osland, PRD80 (2009)

Via the interaction term, inert particles affect on the active sector.

Results

We take $m(H_3) = mh/2$ and $m(A_3) = m(H_3^{\pm}) = 400$, 500 and 550 GeV.

Contents

- Introduction
 - Relationship between Higgs coupling deviations & Higgs mass bound
- S matrix Unitarity and its application to Higgs mass bounds
 - SM, 2HDM, 3HDM
- Deviations in the SM-like Higgs boson couplings

Summary

Yukawa Interactions

Under the Z₂ symmetry, the Yukawa interactions are given by

$$\mathcal{L}_Y = -Y_u \bar{Q}_L \Phi_u^c u_R - Y_d \bar{Q}_L \Phi_d d_R - Y_e \bar{L}_L \Phi_e e_R$$

Four independent types are allowed as follows

Barger, Hewett, Phillips, PRD41 (1990); Grossman, NPB426 (1994).

Higgs Boson Couplings

$$h \longrightarrow S = (SM) \times \sin(\beta - \alpha)$$

	ξ _u	ξ _d	ξ _e
Type-I	cotβ	cotβ	cotβ
Type-II	cotβ	-tanβ	-tanβ
Type-X	cotβ	cotβ	-tanβ
Type-Y	cotβ	-tanβ	cotβ

$$h \longrightarrow \begin{cases} f \\ = (SM) \times \\ [\sin(\beta-\alpha) + \xi_f \cos(\beta-\alpha)] \end{cases}$$

When $sin(\beta-\alpha) \neq 1$, both hVV and hff couplings deviate from the SM predictions.

κ_e VS κ_d

The structure of the Higgs sector can be determined from the measurements of hVV and hff couplings!

Summary

1. Bottom up approach

By the reconstruction of the Higgs sector, the direction of new physics can be clarified.

2. Non-zero mixing between h and extra Higgs bosons

Non-zero mixing between SM-like Higgs and extra Higgs bosons gives an upper limit on masses of extra Higgs bosons and deviations in h couplings.

3. Unitarity bound

In the high-energy limit, only scalar quartic terms are related to the unitarity bound.

Larger deviations in hVV give stronger bounds on masses of extra Higgs bosons.

4. Fingerprinting the Higgs sector

From deviations in Yukawa couplings, we can discriminate the model type.

Unitarity & Vacuum stability bounds

h Coupling Measurements (Current)

 \square Scaling factors: $\kappa_X = g_{hXX}^{exp}/g_{hXX}^{SM}$

Heinemeyer, Mariotti, Passarino, Tanaka, arXiv:1307.1347 [hep-ph]

 \blacksquare 2 parameter fit ($\kappa_V = \kappa_Z = \kappa_{W_t}, \kappa_F = \kappa_t = \kappa_b = \kappa_{\tau}$)

ATLAS Collaboration, ATLAS-CONF-2014-009

$$\kappa_V = 1.15 \pm 0.08, \quad \kappa_F = 0.99^{+0.08}_{-0.15}, \quad \text{ATLAS}$$

CMS Collaboration, arXiv: 1412.8662 [hep-ex]

$$\kappa_V = 1.01 \pm 0.07, \quad \kappa_F = 0.87^{+0.14}_{-0.13}, \quad \text{CMS}$$

h Coupling Measurements (Future)

Snowmass Higgs Working Group Report, arXiv: 1310.8361 [hep-ex]

Facil	ity	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up
\sqrt{s} (GeV)	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000
$\int \mathcal{L}d$	$t ext{ (fb}^{-1})$	300/expt	3000/expt	250 + 500	1150+1600	250+500+1000	1150 + 1600 + 2500
κ_{γ}		5 - 7%	2-5%	8.3%	4.4%	3.8%	2.3%
κ_g		6-8%	3-5%	2.0%	1.1%	1.1%	0.67%
κ_W		4 - 6%	2-5%	0.39%	0.21%	0.21%	0.2%
κ_Z		4-6%	2-4%	0.49%	0.24%	0.50%	0.3%
κ_ℓ		6 - 8%	2 - 5%	1.9%	0.98%	1.3%	0.72%
$\kappa_d =$	κ_b	10 - 13%	4-7%	0.93%	0.60%	0.51%	0.4%
$\kappa_u =$	κ_t	14 - 15%	7 - 10%	2.5%	1.3%	1.3%	0.9%

The Higgs boson couplings can be measured with the accuracy of a few% at HL-LHC and O(1)% or better than 1% at ILC500!

Higgs Potential in the 3HDM

Moretti, KY, PRD91 (2015)

Under $Z_2 \times Z_2'$, the most general Higgs potential is given by

$$\begin{split} V(\varphi_0, \varphi_1, \varphi_2) &= \sum_{i=0,...2} \mu_i^2 \varphi_i^\dagger \varphi_i + (\mu_{12}^2 \varphi_1^\dagger \varphi_2 + \text{H.c.}) \\ &+ \frac{1}{2} \sum_{i=0,...2} \lambda_i (\varphi_i^\dagger \varphi_i)^2 + \lambda_3 (\varphi_1^\dagger \varphi_1) (\varphi_2^\dagger \varphi_2) + \lambda_4 |\varphi_1^\dagger \varphi_2|^2 + \frac{1}{2} [\lambda_5 (\varphi_1^\dagger \varphi_2)^2 + \text{H.c.}] \\ &+ \rho_1 (\varphi_1^\dagger \varphi_1) (\varphi_0^\dagger \varphi_0) + \rho_2 |\varphi_1^\dagger \varphi_0|^2 + \frac{1}{2} [\rho_3 (\varphi_1^\dagger \varphi_0)^2 + \text{H.c.}] \\ &+ \sigma_1 (\varphi_2^\dagger \varphi_2) (\varphi_0^\dagger \varphi_0) + \sigma_2 |\varphi_2^\dagger \varphi_0|^2 + \frac{1}{2} [\sigma_3 (\varphi_2^\dagger \varphi_0)^2 + \text{H.c.}], \end{split}$$

- There are totally 16 independent parameters.
- 8 of them correspond to 2HDM parameters.
- 3 of them correspond to the masses of inert scalar bosons.
- Remaining 5 are fixed as $\sigma_i = \rho_i$ (i=1,2,3), $\lambda_0 = 0$, $\rho_1 > 2|\rho_2|$.

All the independent eigenvalues

Moretti, KY, PRD91 (2015)

$$X_{1} = \begin{pmatrix} 3\lambda_{\eta} & 2\rho_{1} + \rho_{2} & 2\sigma_{1} + \sigma_{2} \\ 2\rho_{1} + \rho_{2} & 3\lambda_{1} & 2\lambda_{3} + \lambda_{4} \\ 2\sigma_{1} + \sigma_{2} & 2\lambda_{3} + \lambda_{4} & 3\lambda_{2} \end{pmatrix}, \quad X_{2} = \begin{pmatrix} \lambda_{\eta} & \rho_{2} & \sigma_{2} \\ \rho_{2} & \lambda_{1} & \lambda_{4} \\ \sigma_{2} & \lambda_{4} & \lambda_{2} \end{pmatrix}, \quad X_{3} = \begin{pmatrix} \lambda_{\eta} & |\rho_{3}| & |\sigma_{3}| \\ |\rho_{3}| & \lambda_{1} & |\lambda_{5}| \\ |\sigma_{3}| & |\lambda_{5}| & \lambda_{2} \end{pmatrix},$$

$$y_{1}^{\pm} = \lambda_{3} + 2\lambda_{4} \pm 3|\lambda_{5}|,$$

$$y_{2}^{\pm} = \rho_{1} + 2\rho_{2} \pm 3|\rho_{3}|,$$

$$y_{3}^{\pm} = \sigma_{1} + 2\sigma_{2} \pm 3|\sigma_{3}|,$$

$$y_{4}^{\pm} = \lambda_{3} \pm |\lambda_{5}|,$$

$$y_{5}^{\pm} = \rho_{1} \pm |\rho_{3}|,$$

$$y_{6}^{\pm} = \sigma_{1} \pm |\sigma_{3}|,$$

$$y_{7}^{\pm} = \lambda_{3} \pm \lambda_{4},$$

$$y_{8}^{\pm} = \rho_{1} \pm \rho_{2},$$

$$y_{9}^{\pm} = \sigma_{1} \pm \sigma_{2}.$$

There are totally 27 independent eigenvalues.

Vacuum Stability

Grzadkowski, Ogreid, Osland, PRD80 (2009)

$$\begin{split} &\lambda_{\eta}>0, \quad \lambda_{1}>0, \quad \lambda_{2}>0, \\ &\sqrt{\lambda_{1}\lambda_{2}}+\bar{\lambda}>0, \quad \sqrt{\lambda_{\eta}\lambda_{1}}+\bar{\rho}>0, \quad \sqrt{\lambda_{\eta}\lambda_{2}}+\bar{\sigma}>0, \\ &\sqrt{\lambda_{\eta}}\bar{\lambda}+\sqrt{\lambda_{1}}\bar{\sigma}+\sqrt{\lambda_{2}}\bar{\rho}>0 \quad \text{or} \quad \lambda_{\eta}\bar{\lambda}^{2}+\lambda_{1}\bar{\sigma}^{2}+\lambda_{2}\bar{\rho}^{2}-\lambda_{\eta}\lambda_{1}\lambda_{2}-2\bar{\lambda}\bar{\rho}\bar{\sigma}<0, \\ &\bar{\lambda}=\lambda_{3}+\text{MIN}(0,\;\lambda_{4}-|\lambda_{5}|), \quad \bar{\rho}=\rho_{1}+\text{MIN}(0,\;\rho_{2}-|\rho_{3}|), \quad \bar{\sigma}=\sigma_{1}+\text{MIN}(0,\;\sigma_{2}-|\sigma_{3}|) \end{split}$$

Tanβ Scanned Case

The case with $mH^{\pm} = mH$

Electroweak S and T parameters

Under $mH^{\pm} = mA$ and $mH_3^{\pm} = mA_3$, we have

$$\Delta S \simeq rac{1}{12\pi} \left(-1 + rac{m_H}{m_{H^\pm}} - 1 + rac{m_{H_3}}{m_{H_3^\pm}}
ight)$$

