

UiO Department of Physics University of Oslo

David Cameron, University of Oslo, ATLAS Experiment and NorduGrid Collaboration

Grid Computing

The Changing Scale of Particle Physics

A discovery in 1930s

- ~2 scientists in 1 country
- pen-and-paper

A discovery in 1970s

- ~200 scientists in ~10 countries
- mainframes

A discovery today

- ~2000 scientists in ~100 countries
- <u>Distributed Computing</u>

Event Collection in ATLAS

Proton-Proton

2835 bunch/beam

Protons/bunch 10¹¹

7 TeV (7x10¹² eV)

Beam energy Luminosity

10³⁴ cm⁻² s⁻¹

Crossing rate 40 MHz

Collisions rate ≈ 10⁷ - 10⁹Hz

New physics rate ≈ .00001 Hz

Event selection: 1 in 10,000,000,000,000

Graphic by CERN

What is the data?

- C++ objects representing tracks, parts of detector etc, saved in files. Some geometry information in databases
- Data is reconstructed and reduced through various formats
 - RAW -> ESD -> AOD -> NTUP

Figure from http://cerncourier.com/cws/article/cnl/34054

Big Data?

Illustration by Sandbox Studio, Chicago Taken from http://www.symmetrymagazine.org/image/august-2012-big-data

WIRED.com © 2014 Condé Nast. Taken from http://www.wired.com/2013/04/bigdata/

Do everything at CERN?

- All this requires (just for ATLAS)
 - 150,000 CPU constantly processing data
 - Storing 10s of PetaBytes (million GB) of data per year
- CERN cannot physically handle this

Grid Computing

- Idea started in late '90s
- Like the electricity Grid
- Grid is a technology that enables optimized and secure access to widely distributed heterogeneous computing and storage facilities of different ownership

From WWWeb to WWGrid

How to make a Grid

- The "Grid middleware" exposes heterogeneous resources to the Grid in a uniform interface
 - Computing Elements give access to CPUs
 - Storage Elements give access to data
 - Information systems describe the Grid
- How to allow access to resources?
 - Cannot give usernames and passwords for hundreds of sites to thousands of people!
 - Fundamental basis is X509-based cryptography

Grid Security (your "passport")

Virtual Organisations (your "visa")

Computing Element in more detail

Storage Element in more detail

The (Worldwide) LHC Computing Grid

- 1 Tier 0: CERN
 - Data processing
- 11 Tier 1s
 - Simulation
 - Reprocessing
- ~130 Tier 2s
 - Simulation
 - User Analysis
- Total storage space: 539,357,056 GB
- Total processors available: 494,118

WLCG Sites

NorduGrid

- Conceived in 2001 as Scandinavian Grid
 - UiO heavily involved in coordination and development
- Now 81 sites in 13 countries
- Software: Advanced Resource Connector (ARC)
 - Computing Element
 - (Basic) Storage Element
 - Information System
- Scandinavian design principles: clean and simple!

NorduGrid Monitor

Sites: 81 Running jobs: 23893

ATLAS Data Processing

- Two main kinds of processing
 - Analysis of data
 - Simulation of data
 - Why?
 - At design phase to optimise the detector layout
 - In running phase to validate real data
 - The only way to know we have discovered something new
 - Simulation is the most CPU-intensive process in LHC experiments

UiO Department of Physics

University of Oslo

UiO Department of Physics University of Oslo

Simulation steps:

- > Event generation
- > Detector simulation
- Track reconstruction

ATLAS Computing Model

The ATLAS Grid(s)

- ATLAS has its own systems on top of the Grids
 - PanDA (Production and Data Analysis) for job management
 - Rucio for data management

Rucio

- A data management system to implement the ATLAS computing model
 - A dataset catalog and transfer system, and more
 - deletion, quota management, consistency, accounting, monitoring, end-user tools, ...

UiO Department of Physics University of Oslo

data12 8tev

data11_7tev
data10_7tev

It's a lot of data

Max Telenor broadband speed: 6MB/s

Average ATLAS traffic: 10GB/s

■ mc12_8tev
■ mc11_7tev

mc10 7tev

Grid job management

Classic "push" model

Pilot "pull" model

UiO • Department of Physics

University of Oslo

UiO • Department of Physics University of Oslo

Job stats

Current Challenges

Data Recording to sape
First Pass Processing

Tier-1

Tier-1

Tier-1

Tier-1

Tier-1

Tier-1

Tier-1

Tier-2

Tier-2

Tier-2

Tier-2

CERN Analysis Facility Analysis Object Data (AOD): ~100 kB/evt derived data (dESD, dAOD, NTUP,...)

Tier-2

- New trends in data management
 - Original model was based on network being the weak point
 - But network has proven to be cheaper and better than expected
 - Break the rigid hierarchical model of data flow and sending jobs to data
 - Dynamic data placement
 - Remote data access over wide area network
- Event-level workflow instead of file-level
- Need more CPU and disk but with flat budget -> opportunistic resources
 - High Performance Computing (supercomputers)
 - Volunteer Computing (general public)

UiO Department of Physics University of Oslo

ATLAS resource needs at T1s & T2s

High Performance Computing (HPC)

- The Grid is made up of dedicated computing clusters
- Most other scientific computing takes place on HPC
- Differences HPC vs Grid:
 - Massively parallel vs single-node workload
 - Low vs high I/O
 - Restricted vs open enviroment
 - Multiple vs single CPU/OS flavours
 - username/password vs x509 cerfiticate

HPC potential - backfilling

- HPCs are used at 80-90% capacity
- Fill in scheduling holes between big jobs with our small jobs
 - Resources would not be used anyway so we can get them for free
 - The HPC gets higher utilisation and recognition in papers

UiO Department of Physics University of Oslo

 Targeting HPC centres in Scandinavia, USA, France, Germany, Switzerland, UK, China,

_ _ _

Future project for ATLAS access to Chinese HPC Grid

Volunteer Computing

- How YOU can help ATLAS!
- Run simulation of collisions inside the ATLAS detector at home

Volunteer Computing via BOINC

BOINC Architecture

lun 2014

May 2014

Aug 2014

Sep 2014

Oct 2014

Nov 2014

Dec 2014

ATLAS@Home

Maximum: 4,921, Minimum: 0.00, Average: 2,073, Current: 4,712 March 2015

lan 2015

Feb 2015

- Like getting a large computing centre for free
- Not quite for free, volunteers expect a certain level of support
- Large potential in idle institute desktops
- Join us!

http://atlasathome.cern.ch

Why not just use "the cloud"?

- Historical reasons
 - Grid infrastructure has developed and stabilised over many years
- Funding
 - Research agencies prefer to pay for in-house expertise
- Sustainability
 - LHC will be taking data for the next 20+ years, data must be kept for even longer than that...
- Cost
 - Data-intensive computing 5-10 times more expensive using commercial cloud providers

Summary

Grid computing is a vital part of LHC physics

- For the average user it is really like the Electric Grid
- UiO plays a strong part at many levels of Grid computing work
- Many interesting challenges ahead

Global Effort → Global Success

Results today only possible due to extraordinary performance of accelerators – experiments - Grid computing

Observation of a new particle consistent with a Higgs Boson (but which one...?)

Historic Milestone but only the beginning

Global Implications for the future

Slide by Rolf Heuer, 4 July 2012