

# Site Report OSG All Hands Meeting 03/23/2015

Azher Mughal Dorian Kcira Samir Cury



#### Caltech today - Resources

- 5824 Cores (98.2% online)
  - 363 servers / 16 Racks
- 2.057 PB of Usable storage
- 200 Cores of opportunistic access
  - +512 until the end of the year 4 GB / core queue



#### Caltech today - Resources

- 5824 Cores (98.2% online)
  - 363 servers / 16 Racks
- 2.057 PB of Usable storage
- 200 Cores of opportunistic access
  - +512 until the end of the year 4 GB / core queue





WAN = 100GE Link from CHOPIN Project (CC-NIE)

#### Software

- HDFS 2.0
- HTCondor 8.2
- All Grid Middleware on OSG 3.2
  - Xrootd: 4.0
  - CE1 : GRAM (Active) + HTCondor CE
  - CE2: GRAM
  - CE Opportunistic : HTCondor CE



# Challenges

- Main item : physical space
  - All the space provided by campus was used by our Tier-2 and associated projects.
  - All upgrades starting from 2015 will have to imply deprecation of the oldest generation of hardware.
    - Not necessarily bad.
  - Server recycling options are available. Unclear if policies will allow it.



# Preparations for Run 2

- CMS will get slots when it asks for
  - OSG/Opportunistic job preemption. 48h Pilots.
- AAA will work when configured. In all resources (T3 included).
  - O More flexible workflows are a fact. Networking activity needs more attention to prevent bottlenecks or failures.
- LAN is well-designed to support high throughput
  - T3 got uplink upgraded and started benefiting from T2 faster caches.
  - Some internal links were upgraded.
- Ensuring node-uniformity through Configuration Management and high level service monitoring
  - Special attention to potential black-hole nodes.
- CPU-only resources



# Future goals

- Have optimal WAN usage through GridFTPs
  - Not spend too much resources to fully utilize WAN capacity.
  - Hope to have central middleware (PhEDEx, FTS) helping sites to achieve that.
- Continuous Integration for Configuration Management code



# We're Hiring!

- Preferrably seasoned Site Admin / Sysadmin
  - CMS Experience desirable but not a requisite.
  - Replacing me at the Caltech T2.
  - Send resumes/references to dkcira@caltech.edu
- It was good to work with all of you and for CMS!



### Strategy for transfer middleware

- GridFTP Strategy 2 dedicated servers, pool of 6 "elastic GridFTPs"
  - More will be added if justified
  - O Won't lose 192 cores from batch system if transfers are calm.
  - Switchover could be automated
- Mellanox drivers improved significantly
  - o 40 Gbps GridFTPs possible?



#### Older module/fw @ 40 Gbps



# Systematic CMSSW Benchmarks

- HS06 is a good reference
  - Some suspect that it will eventually diverge from HEP software behavior
  - O It's not the actual software.
  - Requires license/deployment/execution effort.
    - Our Framework enables us to easily benchmark it.
- CMSSW is already deployed and working on worker-nodes
  - No deployment effort
  - Central reporting
  - O See in details my <u>HEPiX slides</u> about this.
  - Code is available in <u>GitHub</u>



#### Status

- Currently have several running modes and PSets:
  - Running modes
    - Condor Benchmark becomes a ClassAd
      - Thanks, Brian!
    - Whole node isolated
    - Transparent submit jobs to batch system
      - Optional CouchDB reporting
  - o PSets:
    - Tier-0 reconstruction, 33 PileUp
    - Monte Carlo GENSIM



# Monitoring CouchApp

| Processor                                                                            | Average TpE | Min TpE | Max TpE | Entries * |  |
|--------------------------------------------------------------------------------------|-------------|---------|---------|-----------|--|
| 1 Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz                                           | 32.99       | 19.06   | 42.43   | 522       |  |
| 2 AMD Opteron(tm) Processor 6378                                                     | 30.37       | 20.34   | 35.37   | 224       |  |
| 3 Intel(R) Xeon(R) CPU L5640 @ 2.27GHz                                               | 33.15       | 22.05   | 49.92   | 212       |  |
| 4 Intel(R) Xeon(R) CPU L5420 @ 2.50GHz                                               | 27.10       | 21.86   | 36.12   | 134       |  |
| 5 Intel(R) Xeon(R) CPU E5630 @ 2.53GHz                                               | 36.81       | 22.35   | 43.15   | 131       |  |
| 6 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz                                           | 36.29       | 22.95   | 43.31   | 123       |  |
| 7 Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz, Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz | 39.24       | 32.95   | 43.57   | 56        |  |
| 8 Intel(R) Xeon(R) CPU L5520 @ 2.27GHz                                               | 28.42       | 21.50   | 40.06   | 55        |  |
| 9 Intel(R) Xeon(R) CPU E5345 @ 2.33GHz                                               | 32.88       | 26.05   | 47.45   | 46        |  |
| 10 Intel(R) Xeon(R) CPU L5630 @ 2.13GHz                                              | 40.57       | 31.74   | 47.51   | 32        |  |
| 11 Intel(R) Xeon(R) CPU 5160 @ 3.00GHz                                               | 21.44       | 20.85   | 22.44   | 6         |  |
| 12 Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz                                          | 46.28       | 45.25   | 47.74   | 3         |  |



#### Summary of transfer activities

- Goal
  - Scale up Grid Middleware to cope with new network speeds.
- Items that require effort/tuning :
  - Central Transfer system (PhEDEx + FTS) be able to trigger a high number of parallel transfers.
  - Sites Handle a high number of parallel transfers
    - Optimize individual transfer rate



#### So far

- Issues
  - PhEDEx configurations at sites was rather limiting
    - Thanks to all admins, that was fixed quickly
  - FTS Optimizer algorithm
    - Optimizer "bypass" got sites doing 20+ Gbps
    - High rate but not stable traffic.
  - Optimizer assumptions are rather optimistic :
    - Default : throttles if success rate < 99%</li>
    - Most "aggressive": throttles if success rate < 95%</p>
    - Success rate : non-configurable for now.



### Latest developments

- FTS3 deployed at Caltech
  - O Improved control over configuration, better for tests.
- Found 2 other bottlenecks
  - PhEDEx will throttle transfers if too much recent failures between 2 sites. About 150.
  - PhEDEx queues By setting a high LoadTest rate, you're queueing several TB. High, Normal, Low priority queues have a limit of 15 TB.
    - In practice, one would manage to download from 3 other sites at most.



#### Conclusions

- It's not "just about" raising LoadTest rates and having good, fast SEs on both sites.
  - It improved from what we had at the beginning.
- It might take more than 1 SA's "free time" to brush out all the problems.
- It's an interesting problem, and will benefit a large amount of sites when all works well.
- A number of sites have showed high rates with Xrootd, a good share of SRM transfers.
  - O Are we ready to do the same with solely production SRM activity?



Mec 6 May

#### **Backup slides**



# Alternative for site rate testing

- Our Grid Middleware currently has a number of limits and algorithms that were fine for the previous scales.
- We're finding/addressing as we go.
- For people that don't want to be throttled at these several layers, there is an adptive SRM Client developed by LBL/UCLA:
  - Adaptive SRM client
- It will only depend on your client settings and the 2 sites.



#### TransferRate vs Success Rate

| <b>■</b> Source                  | <b>≡</b> Destination    | ₩ VO | Queued | <b>↓</b> Active | Finished | Failed | Cancel | Rate (last 1h) | W Thr.         |
|----------------------------------|-------------------------|------|--------|-----------------|----------|--------|--------|----------------|----------------|
| + srm://srm.rcac.purdue.edu      | srm://srm.ihepa.ufl.edu | CRS  |        | 442             | 596      | 70     |        | 89.49 %        | 4239.51 MB/s d |
| + srm://se3.accre.vanderbilt.edu | srm://dcache07.unl.edu  | CMS  | 175    | 80              | 381      |        |        | 100.00 %       | 166.11 MB/s 🚜  |



### **CPU-only resources**

#### Now a reality

- Have a campus resource as a testbed.
  - Methods and tools used there could be easily applied to cloud resources.
- Main differences site-local-config.xml; storage.xml
- Counts most on networks for I/O, but not all available clusters will have good networking.
  - Filter CMS jobs that are not too demanding for I/O.
  - Brian : receiving only production jobs is a good start.

