

SPRACE Site Report

Guilherme Amadio

SPRACE – UNESP

Computing resources

144 worker nodes

Physical CPUs: 288

Logical CPUs (cores): 1088

HEPSpec06: 13698

02 head nodes

- CE: HTCondor-CE job gateway and HTCondor job scheduler
- SE: dCache distributed storage system

04 auxiliary servers

- Authentication: LDAP, GUMS
- Shared filesystems: NFS, CVMFS
- Proxy services (Frontier Squid)
- Support services: monitoring, VM servers, DNS server, etc.

Computing resources (cont.)

- 01 job submission server
 - access.sprace.org.br (Red Hat 6)
 - Work environment for:
 - □ Job submission (HTCondor stack)
 - ☐ File transfers (GridFTP clients, dCache clients, Globus clients)
 - □ C/C++, Fortran, Python
 - □ ROOT, CMSSW
- 12 storage servers
 - 1 PB (raw), 0.85 PB (effective)
 - 10 Gbps links (LAN, WAN)
 - Usage percentage: 81%

SPRACE servers in the datacenter

Network Infrastructure

- LAN (cluster internal connections)
 - Worker nodes: 1 Gbps (to top-of-rack switches)
 - NFS, CVMFS, Frontier, VM servers, storage servers: 10 Gbps
- MAN (SPRACE to São Paulo Academic Network provider)
 - Nowadays: 10Gbps (2 redundant fiber links)
 - Upgrade:
 - □ 100 Gbps (2x 40G + 2x 10G links deployed / operational in May 2015)
 - ☐ Links fully dedicated, independent from university commodity network)
- WAN (ANSP to AmLight in Miami)
 - Nowadays: 4x 10Gbps (2 Pacific side, 2 Atlantic side ANSP & RNP)
 - Near future (July 2015):
 - 100Gbps (AmLight OpenWave project)

SPRACE Internal Connectivity

SPRACE External Connectivity

Site Readiness

CMS Jobs: CPU hours (days)
December 2013 to December 2014

Phedex Transfers

188.7 TB transferred to SPRACE during 2014

Phedex Transfers

174.1 TB transferred from SPRACE during 2014

Site Planning for 2015

New storage server

- ~150 TB (usable) with 40G NIC card
- SPRACE total effective storage space will reach 1 PB
- Should be in production in April

16 new worker nodes

- Physical CPUs: 32 (Xeon E5-2600v3) 192 cores
- Should be in production in July/August
- Old worker nodes will be retired: 40 servers (96 cores)

New datacenter border switch

- Dell S6000: 32x 40G ports
- To be connected to the 100G link to ANSP (2x 40G channels)
- Deployed and tested during SC'14
- Should be in production in May

SPRACE connection to LHCONE

- Under discussion should be finished in May/June
- ANSP (Brazil) → AmLight (Miami, USA) → ManLan through AtlanticWave

Site Planning for 2016

New storage servers

- SPRACE total effective storage space will approach 1.5 PB
- Storage servers with 40G NIC cards
- 32 new worker nodes
 - Physical / logical CPUs: investigating
- Old worker nodes will be retired
 - 24 servers (96 cores)
 - Retirement should happen as soon as new worker nodes enter production phase
- New control servers
 - CE, SE will be upgraded
 - New servers will have 40G NIC cards (LAN, WAN)
 - Old CE, SE will be used to upgrade auxiliary servers
- New datacenter border switch
 - A second Dell S6000 should be bought for redundancy purpose

SPRACE CMS L1TT Collaboration

 New Remote Control Functions for ATCA Carrier Pulsar IIb IPMC for the L1TT Operator:

IPCC: GeantV Development

- IPCC Intel Parallel Computing Center
 - Parallelization and Vectorization of GeantV
- Geant: Geometry and Tracking
 - Framework to simulate passage of particles through matter
- Geant4MT: Multi-threaded version of Geant4
 - Event-level parallelism
- GeantV: Geant Vector Prototype
 - Multi-threaded and vectorized
 - Take advantage of new hardware
 - ☐ GPUs, Xeon Phi
 - New programming models:
 - Nvidia's CUDA, MIC architecture

Challenges

- Datacenter power and cooling issues
 - New SPRACE servers will require power and cooling capacity
 - A 150KVA no-break system is ready to be installed (costly)
 - Cooling issue: there is no room for new CRAC units
 - Alternatives:
 - Hot-air collectors
 - □ Server redistribution (thermal management)
 - Retirement of old servers
 - □ Hot/cold aisle containment
- Network issues
 - 4 X 40G module for ANSP Brocade switch should be bought
 - We still do not have a plan for IPv6 deployment
- Manpower
 - Short on dedicated manpower to take care of SPRACE farm