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Introduction

In the context of AdS/CFT it is natural to introduce the
Wilson loop

W =

∫
C

Aµdxµ +

∫
C
ϕidy i

To keep some supersymmetries we impose |ẋ |2 − |ẏ |2 = 0
constraining the geometry of the loop
For circular loops the perturbative series for < W > was
conjectured to be resummable giving the number of planar
graphs
The same result can be recovered from matrix models
evaluating

<
1
N treM >=

1
Z

∫
DM 1

N treMe−
2N
λ

trM2
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Introduction

The proof of this result was given using (field) localization
for a N = 2∗ theory on S4

< WR(C) >≈ 1
ZS4

∫
Dae−

8π2r2a2
g2 trRe2πira

|Zinst(ia, r−1, q)|2

In the limit m→ ε1 = r−1(6= m→ 0) we recover the
N = 4 case
This result extends the “standard” computations in R4 or
for complex manifolds in many respects:

Since W is real we must account for instantons and
anti-instantons
For complex manifolds the contributions of different
patches are multiplied
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Localization

Localization is based on an equivariant extension of the
original theory

Introducing Ω =
(
ε1σ1 0

0 ε2σ1

)
the original N = 2 SUSY

theory gets deformed
The e.o.m. for the scalar field becomes
D2ϕ = ΩµνFµν + ferm. and the zero modes

∇[µZ a
ν] = (∇[µZ a

ν])
dual ∇µZ a

µ = 0

lead to Zµ = Dµϕ− Ων
λxλFνµ from which ϕ̃ = ϕ+ δxµAµ
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The scalar field

Furthermore the moduli space of the solutions needs to be
compactified and made smooth. This makes the theory
non commutative
In turn the scalar field in ADHM is ϕ̃ = ŪδU where the
space spanned from U is isomorphic to the ideal
I = {zk−1

1 z l−1
2 |k, l 6= Y }

z4
2

z3
2 z1z3

2 z2
1 z3

2

z2
2 z1z2

2 z2
1 z2

2

z2 z1z2 z2
1 z2 z3

1 z2

1 z1 z2
1 z3

1
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The scalar field

The eigenvalues of U can now be computed ⇒
λk,l = au + (k − 1)ε1 + (l − 1)ε2 and the character

tr ezλ ∣∣
Y = V

N∑
u=1

∑
(k,l)/∈Yu

ezχ(k,l)

=
∑

u

ezau − (1− ez ε1)(1− ez ε2)
∑

(i ,j)∈Yu

ezλ(i,j)


An interesting way to think of ϕ̃ is to define
F = ϕ̃+ λ+ F and Φ = ϕ̃+ λmθ

m + 1
2 Fmnθ

mθn + . . .
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Back to WL

Let z`(s) = r`eiε`s and δz` = ż` = iε`eiε`s . If
xm = (z1, z2, z̄1, z̄2) then 1 = |ẋ | = ε1|r1|2 + ε2|r2|2

Then the WL is

C = i
∫ L

0
(Am ẋm + |ẋ |ϕ1) ds = i

2

∫ L

0
ϕ̃(s)ds − h.c.

The path is closed for L = 2πn1/ε1 = 2πn2/ε2 and
ε1/ε2 = n1/n2. Therefore

∑
u e

2πin1
ε1

ϕ̃u
∣∣∣
Y

=
∑

u e
2πin1
ε1

au

〈tr W 〉S4 =
1
Z

∫
γ

dNa tr e
2πin1 a
ε1 |Zone−loop( a)Zinst(a, ~τ) |2
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Deformed N = 2∗

It is now natural to introduce a deformed N = 2∗ given by
Sclass =

∫
d4d4θFclass(Φ) + h.c. where only the scalar in

Φ gets a v.e.v. with

Fclass(Φ) =
p∑

J=2

iτJ
2πJ!

tr ΦJ

The partition function thus defined is the generating
function of 〈tr ϕ̃J1 tr ϕ̃J2 . . .〉undeformed given that

1
J!
〈tr ϕ̃J〉 =

iε1ε2
2π ∂τJ ln Z (~τ)
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Deformed N = 4

In the limit m = ε1 we go back to a N = 4 theory with
potential V (a, ~τ) = 4π

ε1ε2 N
∑p

J=2
τJ
J! tra

J

〈W 〉 =

∫
dNa∆(a)treiae−NV (a,~τ)

Computations can be easily carried out in particular cases.
In presence of a quartic terms g4a4 one gets

W =
1
N

∞∑
n=0

〈
tr a2n

(2n)!

〉
= 1 +

∑
n,k

(−12g4λ)kλn(2k + n − 1)!

n!(n − 1)!k!(k + n + 1)!

= 1 +
∞∑

k=0

λ(−12λ2g4)k (2k)!1F2 (2, k + 3; 2k + 1;λ)

k! (k + 2)!
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AGT dual

∆̄1

∆2

∆1

∆3

∆4

A correlator 〈Φ(z1, z̄1)Φ(z2, z̄2)Φ(z3, z̄3)Φ(z4, z̄4)〉 gets
contributions from the conformal blocks which are
holomorphic

Z = 1 +
∑

k
qkZk = (1− q)∆(α2)(1 +

∑
k

qkFk(q|∆i ))
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AGT dual

There is a natural basis a−~kL−~̀ |P〉 with
Ln|P〉 = an|P〉 = 0 for n > 0

which are the eigenstates of
L0 + 2

∑
k>0 a−kak with eigenvalues ∆(P) +

∑
ki +

∑
`j .

In this basis we define primaries Vα = VαV L
α in Vir ⊗H

A basis |P〉~λ =
∑
|~µ|=|~λ| C

µ1,µ2
~λ

a−µ1L−µ2 |P〉 can be defined
such that

Zk ≈
∑
~λ

∅〈P|Vα2 |P ′〉~λ ~λ
〈P ′|Vα3 |P〉∅

= 〈0|Vα1(∞)Vα2(1)Vα3(q)Vα4(0)|〉
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AGT dual

It also happens that the states |P〉~λ are the eigenstates for
the system of mutually commuting integrals of motions

I2 = L0 − c
24 + 2

∞∑
k=1

a−kak

I3 =
∑
k 6=0

a−k Lk + 2iQ
∞∑

k=1
ka−k ak + 1

3
∑
i ,j

aiaj a−i−j

I4 = 2
∞∑

k=1
L−kLk + L2

0 − c+2
12 + 6

∑
i+j 6=0

L−i−jaiaj+

12(L0 − c
24)

∞∑
k=1

a−kak6iQ
∑
k 6=0
|k|a−k Lk + 2(1− 5Q2)

∞∑
k=1

k2a−kak + 6iQ
∞∑
i ,j
|i |aiaja−i−j +

∞∑
i ,j,k

: aiajaka−i−j−k :
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AGT dual

This is no surprise since the basis |P〉~λ can be written in
terms of generalized Jack polynomials
In turn these Jack polynomials are the eigenfunctions of
the hamiltonian of the Calogero-Sutherland model
This is an aspect of a correspondence between the Hilbert
schemes of n points introduced before and Jack poly. The
number n = n1 + . . . nk can be partitioned and
corresponds to the element pn1pn2 . . . pnk ∈ C[p1, p2, . . .]
The cohomological degree is deg(pk) = 2(k − 1).
Ex.Hilb4 =⇒ H6(Hilb4) = 1,H4(Hilb4) = 2,H2(Hilb4) =
1,H0(Hilb4) = 1

(4, 0, 0, 0) =⇒ deg(p4) = 6; (3, 1, 0, 0) =⇒ deg(p3p1) = 4
(2, 2, 0, 0) =⇒ deg(p2

2) = 4; (2, 1, 1, 0) =⇒ deg(p2p2
1) = 4

(1, 1, 1, 1) =⇒ deg(p4
1) = 0
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AGT dual

The eigenvalues are exactly those of trϕJ . We then
computed

Gn(αi |q)〈0|Vα1(∞)Vα2(1)InVα3(q)Vα4(0)|〉

to find
Gn(αi , α|q) = LnG(αi , α|q)

The Ln are given by

L2 =z∂z −∆− c
24

L3 =
z

1− z [(Q + α2 − α3) z ∂z + (Q − α3)(∆ + ∆2 −∆1)

−2α2(Q − α3)2 + α2(∆−∆3 −∆4)
]
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AGT dual

Using the gauge theory/CFT dictionary

α1 = ε
2 + 1

2(m1 −m2) α2 = −1
2(m1 + m2)

α3 =ε− 1
2(m1 + m2) α4 = ε

2 + 1
2(m1 −m2)

α = ε
2 + a ε = ε1 + ε2 = Q ε1 = b−1 ε2 = b
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AGT dual

We finally find (Mi are Casimirs)

〈trϕ̃2〉 = −2ε1ε2q∂q ln Z

〈trϕ̃3〉 =
3q

1− q

(
−M1

2 〈trϕ̃
2〉+ M3

)
〈trϕ̃4〉 =

1 + q
2(1− q)

〈trϕ̃2〉2 +
[
2a2 + ε1ε2 − 2q2

(ε1ε2
2 − a2 −M2

+M2
1
)

+ 2q(εM1 + M2)
]
〈trϕ̃2〉+

4q
(1− q)2 [a4 + a2(εM1 + M2)

+ εM3 + M4 − q(a4 − a2(M2
1 −M2)−M1M3 + M4)]
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Minimal Models

Given the localization formula

Zinst =
∑
Y

q|Y |
N∏

u,v=1

Z∅,Yv (m̄u − av ) ZYu ,∅(au −mv )

ZYu ,Yv (au − av )

where

Z∅,Yv (m̄u − av ) =
∏

(i ,j)∈Yv

(m̄u − av − ε1(i − 1)− ε2 (j − 1))

ZYu ,∅(au −mv ) =
∏

(i ,j)∈Yu

(au −mv + ε1i + ε2 j)

It is easy to realize that these functions are zero for
mu = au + puε1 + quε2 or
m̄u = au + (pu − 1)ε1 + (qu − 1)ε2
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Minimal Models

In particular for the choice mu = au + ε+ ε2 one gets

Zinst = NFN−1(A
B
∣∣q)

where

Av =
a1 − m̄v
ε1

=
m1 − m̄v − 2ε2

ε1
− 1 v = 1, . . .N

Bv =
a1 − av + ε2

ε1
+ 1 =

m1 −mv
ε1

+ 1 v = 2, . . .N

On the AGT side this corresponds to degenerated primary
fields φnm leading to null states Lnmφnm
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Minimal Models

Given our previous choice n1 = −`p, n2 = `q we get
ε1/ε2 = −p/q the central charges

c = 1− 6(p − q)2

pq

and the dimension ∆n,m = αn,m(Q − αn,m) of the primary
fields of the minimal models with Q = b + 1/b,
b = i

√
p/q and

αn,m = b 1− n
2 +

1−m
2b

The vev a = Q/2− α and the correlators follow
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Chiral ring from curves

In the SW theory a crucial role is played by
ul = trϕl = P(trϕ, . . . , trϕN) for l > N and SU(N).
Ex.trϕ3 = (trϕ)3 − 3/2trϕ[(trϕ)2 − trϕ2]

Given PN(z) = det(z − ϕ) then classically

tr 1
z − ϕ =

P ′N(z)

PN(z)

At the quantum level using the Konishi anomaly we get
(for SU(2), P(z) = (z2 − a2)

〈tr 1
z − ϕ〉 =

1
z +

trϕ2

z3 +
trϕ4

z5 + . . . =

P ′N(z)√
P2

N(z)− 4qN/2
=

2
z +

2a2

z3 +
2(a4 + 2q)

z5 + . . .
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Chiral ring from curves

From which given u = 2a2

〈trϕ2〉 = u

〈trϕ4〉 =
〈(trϕ2〉)2

2 + 4q

SW curves can be found from the partition function Z in
the limit ε1, ε2 → 0. A corresponding curve can also be
found for ε1 = ε, ε2 → 0

−q Q(z − ε) y(z) y(z + ε) + (1 + q) P(z)y(z + ε)− 1 = 0

with P(z) = z2 + u1z + u2 Q(z) = 1 +
∑4
`=1 M` z`
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Chiral ring from curves

Now given y(z + ε) = y2/z2 + y3/z3 + . . . we have

∂z log y(z + ε) =

〈
tr 1

z − ϕ̃

〉
=

2
z +

〈trϕ̃
z2

〉
+

〈
trϕ̃2

z3

〉
+ . . .

=
2
z +

y3
z2 +

−y2
3 + 2 y4

z3 +
y3

3 − 3 y3 y4 + 3 y5
z4

+
−y4

3 + 4 y2
3 y4 − 2 y2

4 − 4 y3 y5 + 4 y6
z5 + . . .

and, from the curve another relation for the yi ’s in terms
of u1, u2. Now 〈trϕ̃〉 = 0 requires y3 = 0 and determines
u1 while u2 is solved in terms of 〈trϕ̃2〉. This leads to the
same results we found previously.
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Conclusions

Circular Wilson loops are strongly connected to the
equivariant scalar field of N = 2 SUSY
We have studied correlators of trϕJ

The AGT dual gives a nice framework to compare and
further investigate such results
Extension to non circular geometries?
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