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o To keep some supersymmetries we impose |x|? — |y|2 = 0
constraining the geometry of the loop

@ For circular loops the perturbative series for < W > was
conjectured to be resummable giving the number of planar
graphs

@ The same result can be recovered from matrix models
evaluating
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o In the limit m — e; = r}(# m — 0) we recover the
N = 4 case

@ This result extends the “standard” computations in R* or
for complex manifolds in many respects:
o Since W is real we must account for instantons and
anti-instantons
o For complex manifolds the contributions of different
patches are multiplied
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@ Localization is based on an equivariant extension of the
original theory

@ Introducing Q = (510“1 6201) the original N =2 SUSY
theory gets deformed

Preliminaries

@ The e.o.m. for the scalar field becomes
D2 = Q,,, F* + ferm. and the zero modes

V[lt q= (V[uza])dual Vuza -0

lead to Z, = Do — Q{x*F,,, from which @ = ¢ + dx*A,
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Wil L . .
and the AT @ Furthermore the moduli space of the solutions needs to be

Sl compactified and made smooth. This makes the theory
Fr: non commutative
@ In turn the scalar field in ADHM is ¢ = UdU where the

space spanned from U is isomorphic to the ideal

Preliminaries I — {Z]l-(_lzé_l ’ k, / # Y}
4
Z
223 2123 Zfzg

21,22
z5 | 2175 | 2125

z2 Z122 21222 21322
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@ The eigenvalues of U can now be computed =
M) = ay + (k —1)e1 + (I — 1)e2 and the character

Preliminaries

Z)\|Y VZ Z R

u=1(k,NEY,
— Z (eza“ —(1—-e1)(1—e"2) Z eZA(fvf))
u (iJ)eYu

@ An interesting way to think of @ is to define
F=@+A+Fand ®=¢+\,0" + 1 Fppm0" +
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Correspon- .
dence o Let Ze(s) = reelées and 62@ = Ze — if[e
M — (21,25,71,2) then 1 = || = e1|n|? + e2|r2|?

iegs If

sncesco X
@ Then the WL is

Preliminaries L ) L
c— i/ (Am X" + [X|1) ds = 5/ #(s)ds — h.c.
0 0

@ The path is closed for L = 27ny/e; = 2mny/ep and

2ming 3 2ming

:Zue €1

U u

€1/€2 = n1/ny. Therefore 3, e «

—

2ming a
(tr W) / dVatre 5 | Zoneotoop(8) Zunst(a,7)
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: | @ It is now natural to introduce a deformed N = 2* given by
F Selass = [ d*d*0 Felass(®) + h.c. where only the scalar in
® gets a v.e.v. with

p
ze;or;ed F class(q')) = Z
J=2

ity

tr &7
ot

@ The partition function thus defined is the generating
function of (tr @1 tr &% .. )undeformed given that

i€1€2
2w

1
tr @) =

il 0., In Z(7)
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Correspon- @ In the limit m= €1 we go backtoa N =4 theory with

dence
. =\ 4 P TJ
potential V(a,7) = 5 >0, Jtra’

W) = /dNaA(a)trei"e’NV("ﬂ

Deformed

N = 2* e Computations can be easily carried out in particular cases.
In presence of a quartic terms gza* one gets

W_1i<tra > +Z( 12g4A)f\"(2k + n — 1)!

(2 nl(n—1)k!(k+n+1)!

M—=12X2gy)k (2K)11F2 (2, k + 3; 2k +1; \)
k! (k +2)!

1+Z

k=0
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A, 51 AV

AGT dual

@ A correlator (®(z1,21)P (22, 22)P(23, 23)P(24, Z2)) gets
contributions from the conformal blocks which are
holomorphic

Z=1+3 "2 =(1-q)* 1+ ¢"Fulql))
k k
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Correspon- o There is a natural basis a_;L ;|P) with

dence

Francesco L,|P) = a,|P) = 0 for n > 0 which are the eigenstates of
ruee Lo+ 23 4og a_kak with eigenvalues A(P) + 3 ki + > 4.
In this basis we define primaries V, = V,, Vof in Vir@ H

AGT dual
o Abasis [P); =355 C;\f“’”a_u1 L_,,|P) can be defined
such that

Zi =Y p(PVarlP')5 5(P' Va3 P)g

A
= (0[Va; (00)Var (1) Va3 (q) Vau (0)[)



AGT dual

o e o It also happens that the states |P) are the eigenstates for

Correspon-

denee the system of mutually commuting integrals of motions

0o
I = L0—2—C4—|—223_kak
k=1

00

I3 = Z a_y Lk +2iQ Z ka_j ax + % Z ajaja_j—j
k40 k=1 i

AGT dual

o0
=2 Loyl +L5—52+6 > L jaa+
k=1 i+j#0

12(L0 — i) Z a_,abi@ Z |k|a_k Ly + 2(1 — 502)

k=1 k£0

Zk a_ k3k+6lQZ| ilajaja_; _J+Z ajajaka—j—j—k :

= ij INBS



AGT dual

iy @ This is no surprise since the basis |P); can be written in

Sl terms of generalized Jack ponnom|a|s

Francesco @ In turn these Jack polynomials are the eigenfunctions of

N the hamiltonian of the Calogero-Sutherland model

@ This is an aspect of a correspondence between the Hilbert
schemes of n points introduced before and Jack poly. The
number n = ny + ... n, can be partitioned and

AGT dual corresponds to the element p,, P, - - . Pn, € C[p1, p2, .. ]

The cohomological degree is deg(px) = 2(k — 1).

Ex.Hilby == H®(Hilbs) = 1, H*(Hilby) = 2, H*(Hilbg) =

1, HO(Hilby) = 1

(4,0,0,0) = deg(pa)
(2,2,0,0) = deg(p3)
(1,1,1,1) = deg(p{) =

6: (3,1,0,0) = deg(psp1) = 4
4 (27 1,1, 0) = deg(p2p1) 4
0
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rrespe @ The eigenvalues are exactly those of trg”. We then
computed

Gn(@i1q)(0|Vay (00)Va, (1) 1nVas (q) Vau (0)])

to find
Gn(ai, alq) = L,G(ai, alq)
@ The L, are given by

AGT dual

£2 :262 — A £

~ %
L3 :1iz[(Q‘i‘az—043)Zaz+(Q—a3)(A+A2—A1)

—202(Q — a3)? + (A — Az — A4)}
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@ Using the gauge theory/CFT dictionary

ar =5+ 3(m —m)  ax=—3(m+m)
AGT dual a3 =€ — %(ml + m2) g = % + %(ml _ mz)

a:%+a e=€e1+e=Q 61=b71 e2=0>b
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Francesco e We finally find (M; are Casimirs)

(tr@?) = —2€162904In Z

() = =L (—M1<tr¢2> " Ms)

T 1-g 2
AGT dual ~4 1+gq 202 ) , (€162 )
(trg”) = m(trg@ )+ [23 + €160 — 2q <T — 22— M,
4
+MZ) +2q(eMy + My)] (tr@?) + a _qq)2 [a* + 2% (eMy + My)

+ Mz + My — g(a* — 22(M? — My) — My Ms + M,)]
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N _
Zu = g [ Zxdme=20) vl = m)
Y U,V:l ZYU:Yv(au - a\/)

where

Z@,yv(ﬁ')u —ay) = H (Mmy—ay,—e(i—1)—e(j—1))
(iJ)eyv

Zy,0(au—my) = [] (au—my+eii+e))
(iJ)EYu

@ It is easy to realize that these functions are zero for
my = ay + pu€1 + quez or
my = ay, + (pu - 1)51 + (qu - 1)62
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@ In particular for the choice m, = a, + € + € one gets

Zinst = NFn-1(B]9)

where
A, =M momy =2 oy
€1 €1
Bv:erl:qul v=2,...N
€1 €1

@ On the AGT side this corresponds to degenerated primary
fields ¢nm leading to null states Lpm®nm
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dence @ Given our previous choice ny = —{p, np, = {q we get
€1/€2 = —p/q the central charges

6(p —q)°
pq

c=1-

and the dimension Ap m = opm(Q — @nm) of the primary
fields of the minimal models with Q = b+ 1/b,

b=iy/p/q and

1—n+1—m
2 2b

Opm=Db

@ The vev a = Q/2 — « and the correlators follow
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A Ex.tre3 = (trp)® — 3/2trp[(tre)? — tre?]
e Given Py(z) = det(z — ¢) then classically
z—¢  Pn(2)
@ At the quantum level using the Konishi anomaly we get
Chiral ring (for 5U(2), (Z) (Z — da )
from curves
1 1 trp?  trpt
t = — L=
<rz—gp> z+ z3 + z° +
Pj(z 2 2% 2(a*+2
We) 2 27 2at42)

- 3 5
P2(z) —4qN2  Z  Z z
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Fra

(tre?) = u
((tre?))?

(i) = S5 4

@ SW curves can be found from the partition function Z in
el the limit €;,e2 — 0. A corresponding curve can also be
tomlcnes found for €1 = €,ep — 0

—qQ(z=€)y(2)y(z+e)+(1+q)P(z)y(z+¢€) -1=0

with P(z) =22+ uniz+u Q(z)=1+37 1 M, Z*
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dence o Now given y(z +¢€) = y2/z% + y3/23 + ... we have

77777 1 2 /trg trg?
8zlogy(z+e):<tr ~>:+<f>+< f>+
z—@ z z z

2 y3 Y342y Y3—-3ysya+3ys
- 2 3 + 4

V4 Z V4 V4
n —ys+A4yiya—2y: —4y3ys+4ye

Chiral ring 25

+ ..

from curves

and, from the curve another relation for the y;'s in terms
of u1, up. Now (tr@) = 0 requires y3 = 0 and determines
u1 while us is solved in terms of (tr@?). This leads to the
same results we found previously.
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@ Circular Wilson loops are strongly connected to the
equivariant scalar field of N = 2 SUSY

o We have studied correlators of try’

@ The AGT dual gives a nice framework to compare and
further investigate such results

@ Extension to non circular geometries?

Conclusions
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