

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

Wilson Loops and the AGT Correspondence

Francesco Fucito

April 5, 2015

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• In the context of AdS/CFT it is natural to introduce the Wilson loop

$$W = \int_C A_\mu dx^\mu + \int_C \varphi^i dy^i$$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• In the context of AdS/CFT it is natural to introduce the Wilson loop

$$W = \int_C A_\mu dx^\mu + \int_C \varphi^i dy^i$$

• To keep some supersymmetries we impose $|\dot{x}|^2 - |\dot{y}|^2 = 0$ constraining the geometry of the loop

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• In the context of AdS/CFT it is natural to introduce the Wilson loop

$$W = \int_C A_\mu dx^\mu + \int_C \varphi^i dy^i$$

- To keep some supersymmetries we impose $|\dot{x}|^2 |\dot{y}|^2 = 0$ constraining the geometry of the loop
- For circular loops the perturbative series for < W > was conjectured to be resummable giving the number of planar graphs

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

 $\bullet\,$ In the context of AdS/CFT it is natural to introduce the Wilson loop

$$W = \int_C A_\mu dx^\mu + \int_C \varphi^i dy^i$$

- To keep some supersymmetries we impose $|\dot{x}|^2 |\dot{y}|^2 = 0$ constraining the geometry of the loop
- For circular loops the perturbative series for $\langle W \rangle$ was conjectured to be resummable giving the number of planar graphs
- The same result can be recovered from matrix models evaluating

$$<\frac{1}{N}\mathrm{tr}e^{M}>=\frac{1}{Z}\int\mathcal{D}M\frac{1}{N}\mathrm{tr}e^{M}e^{-\frac{2N}{\lambda}\mathrm{tr}M^{2}}$$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N = 2^*$ theory on S^4

$$< W_R(\mathcal{C}) > \approx rac{1}{Z_{S^4}} \int \mathcal{D}ae^{-rac{8\pi^2 r^2 a^2}{g^2}} \mathrm{tr}_R e^{2\pi i r a}$$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N = 2^*$ theory on S^4

$$< W_R(C) > \approx \frac{1}{Z_{S^4}} \int \mathcal{D}ae^{-\frac{8\pi^2 r^2 a^2}{g^2}} \mathrm{tr}_R e^{2\pi i r a} |Z_{inst}(ia, r^{-1}, q)|^2$$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N = 2^*$ theory on S^4

$$< W_R(C) > \approx \frac{1}{Z_{S^4}} \int \mathcal{D}ae^{-\frac{8\pi^2 r^2 a^2}{g^2}} \operatorname{tr}_R e^{2\pi i r a} |Z_{inst}(ia, r^{-1}, q)|^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• In the limit $m \to \epsilon_1 = r^{-1} (\neq m \to 0)$ we recover the N = 4 case

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N=2^*$ theory on S^4

$$< W_R(C) > \approx \frac{1}{Z_{S^4}} \int \mathcal{D}ae^{-\frac{8\pi^2 r^2 a^2}{g^2}} \operatorname{tr}_R e^{2\pi i r a} |Z_{inst}(ia, r^{-1}, q)|^2$$

- In the limit $m \to \epsilon_1 = r^{-1} (\neq m \to 0)$ we recover the N=4 case
- This result extends the "standard" computations in \mathbb{R}^4 or for complex manifolds in many respects:

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N=2^*$ theory on S^4

$$\langle W_R(C) \rangle \approx \frac{1}{Z_{S^4}} \int \mathcal{D}ae^{-\frac{8\pi^2 r^2 a^2}{g^2}} \operatorname{tr}_R e^{2\pi i r a} |Z_{inst}(ia, r^{-1}, q)|^2$$

- In the limit $m \to \epsilon_1 = r^{-1} (\neq m \to 0)$ we recover the N=4 case
- This result extends the "standard" computations in \mathbb{R}^4 or for complex manifolds in many respects:
 - Since \boldsymbol{W} is real we must account for instantons and anti-instantons

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• The proof of this result was given using (field) localization for a $N=2^*$ theory on S^4

$$\langle W_R(C) \rangle \approx \frac{1}{Z_{S^4}} \int \mathcal{D}ae^{-\frac{8\pi^2 r^2 a^2}{g^2}} \operatorname{tr}_R e^{2\pi i r a} |Z_{inst}(ia, r^{-1}, q)|^2$$

- In the limit $m \to \epsilon_1 = r^{-1} (\neq m \to 0)$ we recover the N = 4 case
- This result extends the "standard" computations in \mathbb{R}^4 or for complex manifolds in many respects:
 - Since \boldsymbol{W} is real we must account for instantons and anti-instantons
 - For complex manifolds the contributions of different patches are multiplied

Localization

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

```
Deformed N = 2^*
```

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• Localization is based on an equivariant extension of the original theory

Localization

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

- Localization is based on an equivariant extension of the original theory
- Introducing $\Omega = \begin{pmatrix} \epsilon_1 \sigma_1 & 0 \\ 0 & \epsilon_2 \sigma_1 \end{pmatrix}$ the original N = 2 SUSY theory gets deformed
- The e.o.m. for the scalar field becomes $D^2 \varphi = \Omega_{\mu\nu} F^{\mu\nu} + \text{ferm.}$ and the zero modes

$$\nabla_{[\mu} Z^{a}_{\nu]} = (\nabla_{[\mu} Z^{a}_{\nu]})^{\text{dual}} \quad \nabla^{\mu} Z^{a}_{\mu} = 0$$

lead to $Z_{\mu} = D_{\mu}\varphi - \Omega_{\lambda}^{\nu}x^{\lambda}F_{\nu\mu}$ from which $\tilde{\varphi} = \varphi + \delta x^{\mu}A_{\mu}$

The scalar field

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

- Furthermore the moduli space of the solutions needs to be compactified and made smooth. This makes the theory non commutative
- In turn the scalar field in ADHM is $\tilde{\varphi} = \bar{U}\delta U$ where the space spanned from U is isomorphic to the ideal $\mathcal{I} = \{z_1^{k-1}z_2^{l-1}|k, l \neq Y\}$

z ₂ ⁴			
z_{2}^{3}	$z_1 z_2^3$	$z_1^2 z_2^3$	
z_{2}^{2}	$z_1 z_2^2$	$z_1^2 z_2^2$	
<i>z</i> ₂	<i>z</i> ₁ <i>z</i> ₂	$z_1^2 z_2$	$z_1^3 z_2$
1	<i>z</i> 1	z_1^2	z_{1}^{3}

The scalar field

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• The eigenvalues of U can now be computed $\Rightarrow \lambda_{k,l} = a_u + (k-1)\epsilon_1 + (l-1)\epsilon_2$ and the character

$$\operatorname{tr} e^{z\lambda} \Big|_{Y} = \mathcal{V} \sum_{u=1}^{N} \sum_{(k,l) \notin Y_{u}} e^{z\chi_{(k,l)}}$$
$$= \sum_{u} \left(e^{za_{u}} - (1 - e^{z\epsilon_{1}})(1 - e^{z\epsilon_{2}}) \sum_{(i,j) \in Y_{u}} e^{z\lambda_{(i,j)}} \right)$$

• An interesting way to think of $\tilde{\varphi}$ is to define $\mathcal{F} = \tilde{\varphi} + \lambda + F$ and $\Phi = \tilde{\varphi} + \lambda_m \theta^m + \frac{1}{2} F_{mn} \theta^m \theta^n + \dots$

Back to WL

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

- Let $z_{\ell}(s) = r_{\ell}e^{i\epsilon_{\ell}s}$ and $\delta z_{\ell} = \dot{z}_{\ell} = i\epsilon_{\ell}e^{i\epsilon_{\ell}s}$. If $x^m = (z_1, z_2, \bar{z}_1, \bar{z}_2)$ then $1 = |\dot{x}| = \epsilon_1|r_1|^2 + \epsilon_2|r_2|^2$
- Then the WL is

$$\mathcal{C} = i \int_0^L (A_m \dot{x}^m + |\dot{x}|\varphi_1) ds = \frac{i}{2} \int_0^L \tilde{\varphi}(s) ds - h.c.$$

• The path is closed for $L = 2\pi n_1/\epsilon_1 = 2\pi n_2/\epsilon_2$ and $\epsilon_1/\epsilon_2 = n_1/n_2$. Therefore $\sum_u e^{\frac{2\pi i n_1}{\epsilon_1}\tilde{\varphi}_u}\Big|_Y = \sum_u e^{\frac{2\pi i n_1}{\epsilon_1}a_u}$

$$\langle \operatorname{tr} W \rangle_{S^4} = \frac{1}{Z} \int_{\gamma} d^N a \operatorname{tr} e^{\frac{2\pi i n_1 a}{\epsilon_1}} |Z_{\mathrm{one-loop}}(a) Z_{\mathrm{inst}}(a, \vec{\tau})|^2$$

Deformed $N = 2^*$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• It is now natural to introduce a deformed $N = 2^*$ given by $S_{\text{class}} = \int d^4 d^4 \theta \, \mathcal{F}_{\text{class}}(\Phi) + \text{h.c.}$ where only the scalar in Φ gets a v.e.v. with

$$\mathcal{F}_{ ext{class}}(\Phi) = \sum_{J=2}^{p} rac{\mathrm{i} au_J}{2\pi J!} \operatorname{tr} \Phi^J$$

• The partition function thus defined is the generating function of $\langle \operatorname{tr} \tilde{\varphi}^{J_1} \operatorname{tr} \tilde{\varphi}^{J_2} \ldots \rangle_{\mathrm{undeformed}}$ given that

$$rac{1}{J!} \langle \mathrm{tr}\, ilde{arphi}^J
angle = rac{\mathrm{i}\epsilon_1\epsilon_2}{2\pi}\, \partial_{ au_J} \ln Z(ec{ au})$$

Deformed N = 4

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• In the limit $m = \epsilon_1$ we go back to a N = 4 theory with potential $V(a, \vec{\tau}) = \frac{4\pi}{\epsilon_1 \epsilon_2 N} \sum_{J=2}^{P} \frac{\tau_J}{J!} \text{tr} a^J$

$$\langle W \rangle = \int d^N a \Delta(a) \mathrm{tr} e^{\mathrm{i} a} e^{-NV(a, \vec{\tau})}$$

• Computations can be easily carried out in particular cases. In presence of a quartic terms $g_4 a^4$ one gets

$$W = \frac{1}{N} \sum_{n=0}^{\infty} \left\langle \frac{\operatorname{tr} a^{2n}}{(2n)!} \right\rangle = 1 + \sum_{n,k} \frac{(-12g_4\lambda)^k \lambda^n (2k+n-1)!}{n!(n-1)!k!(k+n+1)!}$$
$$= 1 + \sum_{k=0}^{\infty} \frac{\lambda (-12\lambda^2 g_4)^k (2k)!_1 F_2 (2,k+3;2k+1;\lambda)}{k! (k+2)!}$$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

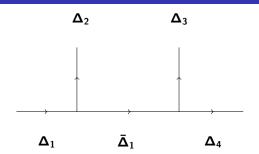
Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions



A correlator (Φ(z₁, z
₁)Φ(z₂, z
₂)Φ(z₃, z
₃)Φ(z₄, z
₄)) gets contributions from the conformal blocks which are holomorphic

$$Z=1+\sum_k q^k Z_k=(1-q)^{\Delta(lpha_2)}(1+\sum_k q^k \mathcal{F}_k(q|\Delta_i))$$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Deformed $N = 2^*$

AGT dual

Chiral ring from curves

Conclusions

• There is a natural basis
$$a_{-\vec{k}}L_{-\vec{\ell}}|P\rangle$$
 with $L_n|P\rangle = a_n|P\rangle = 0$ for $n>0$

ヘロト 人間 トイヨト イヨト

Ξ.

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• There is a natural basis $a_{-\vec{k}}L_{-\vec{\ell}}|P\rangle$ with $L_n|P\rangle = a_n|P\rangle = 0$ for n > 0 which are the eigenstates of $L_0 + 2\sum_{k>0} a_{-k}a_k$ with eigenvalues $\Delta(P) + \sum k_i + \sum \ell_j$.

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• There is a natural basis $a_{-\vec{k}}L_{-\vec{\ell}'}|P\rangle$ with $L_n|P\rangle = a_n|P\rangle = 0$ for n > 0 which are the eigenstates of $L_0 + 2\sum_{k>0} a_{-k}a_k$ with eigenvalues $\Delta(P) + \sum k_i + \sum \ell_j$. In this basis we define primaries $\mathcal{V}_{\alpha} = \mathcal{V}_{\alpha}\mathcal{V}_{\alpha}^{\perp}$ in $Vir \otimes \mathcal{H}$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• There is a natural basis $a_{-\vec{k}}L_{-\vec{\ell}}|P\rangle$ with $L_n|P\rangle = a_n|P\rangle = 0$ for n > 0 which are the eigenstates of $L_0 + 2\sum_{k>0} a_{-k}a_k$ with eigenvalues $\Delta(P) + \sum k_i + \sum \ell_j$. In this basis we define primaries $\mathcal{V}_{\alpha} = \mathcal{V}_{\alpha}\mathcal{V}_{\alpha}^L$ in $Vir \otimes \mathcal{H}$

• A basis $|P\rangle_{\vec{\lambda}}=\sum_{|\vec{\mu}|=|\vec{\lambda}|}C^{\mu_1,\mu_2}_{\vec{\lambda}}a_{-\mu_1}L_{-\mu_2}|P\rangle$ can be defined such that

$$egin{aligned} &Z_k pprox \sum_{ec{\lambda}} {}_{\emptyset} \langle P | \mathcal{V}_{lpha_2} | P'
angle_{ec{\lambda}} {}_{ec{\lambda}} \langle P' | \mathcal{V}_{lpha_3} | P
angle_{\emptyset} \ &= \langle 0 | \mathcal{V}_{lpha_1}(\infty) \mathcal{V}_{lpha_2}(1) \mathcal{V}_{lpha_3}(q) \mathcal{V}_{lpha_4}(0) |
angle \end{aligned}$$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• It also happens that the states $|P\rangle_{\vec{\lambda}}$ are the eigenstates for the system of mutually commuting integrals of motions

$$l_2 = L_0 - \frac{c}{24} + 2\sum_{k=1}^{\infty} a_{-k} a_k$$

$$I_{3} = \sum_{k \neq 0} a_{-k} L_{k} + 2iQ \sum_{k=1}^{\infty} ka_{-k} a_{k} + \frac{1}{3} \sum_{i,j} a_{i}a_{j} a_{-i-j}$$
$$I_{4} = 2 \sum_{k=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j} a_{i}a_{j} + \frac{1}{3} \sum_{k=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j} a_{i}a_{j} + \frac{1}{3} \sum_{k=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j}a_{i}a_{j} + \frac{1}{3} \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j}a_{i}a_{j} + \frac{1}{3} \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j}a_{i}a_{j} + \frac{1}{3} \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i+j \neq 0} L_{-i-j}a_{i}a_{j} + \frac{1}{3} \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{-k} L_{k} + L_{0}^{2} - \frac{c+2}{12} + 6 \sum_{i=1}^{\infty} L_{0} + \frac{c+2}{12} + \frac{c+2}{$$

$$12(L_{0} - \frac{c}{24}) \sum_{k=1}^{\infty} a_{-k} a_{k} 6iQ \sum_{k \neq 0} |k| a_{-k} L_{k} + 2(1 - 5Q^{2})$$
$$\sum_{k=1}^{\infty} k^{2} a_{-k} a_{k} + 6iQ \sum_{i,j}^{\infty} |i| a_{i} a_{j} a_{-i-j} + \sum_{i,j,k}^{\infty} : a_{i} a_{j} a_{k} a_{-i-j-k} :$$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

- This is no surprise since the basis $|P\rangle_{\vec{\lambda}}$ can be written in terms of generalized Jack polynomials
- In turn these Jack polynomials are the eigenfunctions of the hamiltonian of the Calogero-Sutherland model
- This is an aspect of a correspondence between the Hilbert schemes of n points introduced before and Jack poly. The number n = n₁ + ... n_k can be partitioned and corresponds to the element p_{n1}p_{n2}... p_{nk} ∈ C[p₁, p₂,...] The cohomological degree is deg(p_k) = 2(k 1). Ex.Hilb₄ ⇒ H⁶(Hilb₄) = 1, H⁴(Hilb₄) = 2, H²(Hilb₄) = 1, H⁰(Hilb₄) = 1
 - $(4,0,0,0) \Longrightarrow \deg(p_4) = 6; (3,1,0,0) \Longrightarrow \deg(p_3p_1) = 4$ $(2,2,0,0) \Longrightarrow \deg(p_2^2) = 4; (2,1,1,0) \Longrightarrow \deg(p_2p_1^2) = 4$ $(1,1,1,1) \Longrightarrow \deg(p_1^4) = 0$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• The eigenvalues are exactly those of ${\rm tr}\varphi^J.$ We then computed

 $\mathcal{G}_n(lpha_i|q)\langle 0|\mathcal{V}_{lpha_1}(\infty)\mathcal{V}_{lpha_2}(1)I_n\mathcal{V}_{lpha_3}(q)\mathcal{V}_{lpha_4}(0)|
angle$

to find

$$\mathcal{G}_n(\alpha_i, \alpha | q) = \mathcal{L}_n \mathcal{G}(\alpha_i, \alpha | q)$$

• The \mathcal{L}_n are given by

$$\begin{aligned} \mathcal{L}_2 = &z\partial_z - \Delta - \frac{c}{24} \\ \mathcal{L}_3 = &\frac{z}{1-z} \left[(Q + \alpha_2 - \alpha_3) z \, \partial_z + (Q - \alpha_3) (\Delta + \Delta_2 - \Delta_1) \right. \\ &\left. - 2\alpha_2 (Q - \alpha_3)^2 + \alpha_2 (\Delta - \Delta_3 - \Delta_4) \right] \end{aligned}$$

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Deformed $N = 2^*$

AGT dual Minimal Model

Chiral ring from curves

Conclusions

• Using the gauge theory/CFT dictionary

$$\begin{aligned} \alpha_1 &= \frac{\epsilon}{2} + \frac{1}{2}(m_1 - m_2) & \alpha_2 &= -\frac{1}{2}(m_1 + m_2) \\ \alpha_3 &= \epsilon - \frac{1}{2}(m_1 + m_2) & \alpha_4 &= \frac{\epsilon}{2} + \frac{1}{2}(m_1 - m_2) \\ \alpha &= \frac{\epsilon}{2} + a & \epsilon &= \epsilon_1 + \epsilon_2 = Q & \epsilon_1 &= b^{-1} & \epsilon_2 &= b \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• We finally find (M_i are Casimirs) $\langle \operatorname{tr} \tilde{\varphi}^2 \rangle = -2\epsilon_1 \epsilon_2 q \partial_q \ln Z$ $\langle \operatorname{tr} \tilde{\varphi}^3 \rangle = \frac{3q}{1-q} \left(-\frac{M_1}{2} \langle \operatorname{tr} \tilde{\varphi}^2 \rangle + M_3 \right)$ $\langle \operatorname{tr} \tilde{\varphi}^4 \rangle = \frac{1+q}{2(1-q)} \langle \operatorname{tr} \tilde{\varphi}^2 \rangle^2 + \left[2a^2 + \epsilon_1 \epsilon_2 - 2q^2 \left(\frac{\epsilon_1 \epsilon_2}{2} - a^2 - M_2 + M_1^2 \right) + 2q(\epsilon M_1 + M_2) \right] \langle \operatorname{tr} \tilde{\varphi}^2 \rangle + \frac{4q}{(1-q)^2} [a^4 + a^2(\epsilon M_1 + M_2)] + \epsilon M_3 + M_4 - q(a^4 - a^2(M_1^2 - M_2) - M_1 M_3 + M_4)]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Minimal Models

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

Minimal Models

Chiral ring from curves

Conclusions

• Given the localization formula

$$Z_{\mathrm{inst}} = \sum_{Y} q^{|Y|} \prod_{u,v=1}^{N} rac{Z_{\emptyset,Y_v}(ar{m}_u - a_v) Z_{Y_u,\emptyset}(a_u - m_v)}{Z_{Y_u,Y_v}(a_u - a_v)}$$

where

$$Z_{\emptyset,Y_{v}}(\bar{m}_{u}-a_{v}) = \prod_{(i,j)\in Y_{v}}(\bar{m}_{u}-a_{v}-\epsilon_{1}(i-1)-\epsilon_{2}(j-1))$$
$$Z_{Y_{u},\emptyset}(a_{u}-m_{v}) = \prod_{(i,j)\in Y_{u}}(a_{u}-m_{v}+\epsilon_{1}i+\epsilon_{2}j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• It is easy to realize that these functions are zero for $m_u = a_u + p_u \epsilon_1 + q_u \epsilon_2$ or $\bar{m}_u = a_u + (p_u - 1)\epsilon_1 + (q_u - 1)\epsilon_2$

Minimal Models

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

Minimal Models

Chiral ring from curves

Conclusions

• In particular for the choice $m_u = a_u + \epsilon + \epsilon_2$ one gets

$$Z_{\text{inst}} = {}_{N}F_{N-1}({}_{\mathbf{B}}^{\mathbf{A}}|q)$$

where

$$\mathbf{A}_{v} = \frac{a_{1} - \bar{m}_{v}}{\epsilon_{1}} = \frac{m_{1} - \bar{m}_{v} - 2\epsilon_{2}}{\epsilon_{1}} - 1 \qquad v = 1, \dots N$$
$$\mathbf{B}_{v} = \frac{a_{1} - a_{v} + \epsilon_{2}}{\epsilon_{1}} + 1 = \frac{m_{1} - m_{v}}{\epsilon_{1}} + 1 \qquad v = 2, \dots N$$

• On the AGT side this corresponds to degenerated primary fields ϕ_{nm} leading to null states $L_{nm}\phi_{nm}$

Minimal Models

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

Minimal Models

Chiral ring from curves

Conclusions

• Given our previous choice $n_1 = -\ell p$, $n_2 = \ell q$ we get $\epsilon_1/\epsilon_2 = -p/q$ the central charges

$$c=1-\frac{6(p-q)^2}{pq}$$

and the dimension $\Delta_{n,m} = \alpha_{n,m}(Q - \alpha_{n,m})$ of the primary fields of the minimal models with Q = b + 1/b, $b = i\sqrt{p/q}$ and

$$\alpha_{n,m} = b\frac{1-n}{2} + \frac{1-m}{2b}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The vev a=Q/2-lpha and the correlators follow

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

- In the SW theory a crucial role is played by $u_l = \text{tr}\varphi^l = P(\text{tr}\varphi, \dots, \text{tr}\varphi^N)$ for l > N and SU(N). $\text{Ex.tr}\varphi^3 = (\text{tr}\varphi)^3 - 3/2\text{tr}\varphi[(\text{tr}\varphi)^2 - \text{tr}\varphi^2]$
- Given $P_N(z) = \det(z \varphi)$ then classically

$$\mathrm{tr}rac{1}{z-arphi}=rac{P_N'(z)}{P_N(z)}$$

• At the quantum level using the Konishi anomaly we get (for SU(2), $P(z) = (z^2 - a^2)$

$$\langle \operatorname{tr} \frac{1}{z - \varphi} \rangle = \frac{1}{z} + \frac{\operatorname{tr} \varphi^2}{z^3} + \frac{\operatorname{tr} \varphi^4}{z^5} + \dots = \frac{P'_N(z)}{\sqrt{P_N^2(z) - 4q^{N/2}}} = \frac{2}{z} + \frac{2a^2}{z^3} + \frac{2(a^4 + 2q)}{z^5} + \dots$$

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

Minimal Models

Chiral ring from curves

Conclusions

• From which given $u = 2a^2$

$$\langle \mathrm{tr} \varphi^2 \rangle = u$$

 $\langle \mathrm{tr} \varphi^4 \rangle = rac{\langle (\mathrm{tr} \varphi^2 \rangle)^2}{2} + 4q$

イロト 不得 トイヨト イヨト

3

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• From which given $u = 2a^2$

$$\langle \mathrm{tr} \varphi^2 \rangle = u$$

 $\langle \mathrm{tr} \varphi^4 \rangle = rac{\langle (\mathrm{tr} \varphi^2 \rangle)^2}{2} + 4q$

 SW curves can be found from the partition function Z in the limit ε₁, ε₂ → 0. A corresponding curve can also be found for ε₁ = ε, ε₂ → 0

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• From which given $u = 2a^2$

$$\langle \mathrm{tr} \varphi^2 \rangle = u$$

 $\langle \mathrm{tr} \varphi^4 \rangle = \frac{\langle (\mathrm{tr} \varphi^2 \rangle)^2}{2} + 4q$

 SW curves can be found from the partition function Z in the limit ε₁, ε₂ → 0. A corresponding curve can also be found for ε₁ = ε, ε₂ → 0

$$-q Q(z-\epsilon) y(z) y(z+\epsilon) + (1+q) P(z) y(z+\epsilon) - 1 = 0$$

with $P(z) = z^2 + u_1 z + u_2$ $Q(z) = 1 + \sum_{\ell=1}^4 M_\ell z^\ell$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Wilson Loops and the AGT Correspondence

> Francesco Fucito

Introduction Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

• Now given
$$y(z+\epsilon) = y_2/z^2 + y_3/z^3 + \ldots$$
 we have

$$\partial_{z} \log y(z+\epsilon) = \left\langle \operatorname{tr} \frac{1}{z-\tilde{\varphi}} \right\rangle = \frac{2}{z} + \left\langle \frac{\operatorname{tr} \tilde{\varphi}}{z^{2}} \right\rangle + \left\langle \frac{\operatorname{tr} \tilde{\varphi}^{2}}{z^{3}} \right\rangle + \dots$$
$$= \frac{2}{z} + \frac{y_{3}}{z^{2}} + \frac{-y_{3}^{2} + 2y_{4}}{z^{3}} + \frac{y_{3}^{3} - 3y_{3}y_{4} + 3y_{5}}{z^{4}}$$
$$+ \frac{-y_{3}^{4} + 4y_{3}^{2}y_{4} - 2y_{4}^{2} - 4y_{3}y_{5} + 4y_{6}}{z^{5}} + \dots$$

and, from the curve another relation for the y_i 's in terms of u_1, u_2 . Now $\langle \operatorname{tr} \tilde{\varphi} \rangle = 0$ requires $y_3 = 0$ and determines u_1 while u_2 is solved in terms of $\langle \operatorname{tr} \tilde{\varphi}^2 \rangle$. This leads to the same results we found previously.

Conclusions

Wilson Loops and the AGT Correspondence

Francesco Fucito

Introduction

Preliminaries

Deformed $N = 2^*$

AGT dual Minimal Models

Chiral ring from curves

Conclusions

- Circular Wilson loops are strongly connected to the equivariant scalar field of N = 2 SUSY
- \bullet We have studied correlators of ${\rm tr} \varphi^J$
- The AGT dual gives a nice framework to compare and further investigate such results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Extension to non circular geometries?