Constraining cosmology with the small-scale CMB

Renée Hložek Lyman Spitzer Jr. Postdoctoral Fellow Spitzer-Cotsen Fellow in the Society of Fellows of the Liberal Arts TED 2014 Senior Fellow Princeton University

SLAC Summer Science Institute

The Cosmic Microwave Background

Fifty years of the CMB

The Cosmic Microwave Background

$$T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

$$C_{\ell} = \frac{1}{(2\ell+1)} \sum_{m=-\ell}^{\ell} \langle |a_{\ell m}|^2 \rangle$$

CMB Power Spectrum

Basic cosmological model

"Just 6 numbers":

Densities of the universe

Initial conditions

au Reionization physics

The CMB on small scales allows us to test for deviations from the vanilla model

Neutrino constraints

Either parameterise via the effective number of neutrino species:

$$n_{
u} = N_{
m eff} \left(rac{3}{4}
ight) \left(rac{4}{11}
ight) n_{\gamma},$$

$$\rho_R = \left(1 + N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$$

or consider sum of the masses of the neutrino species (again through the energy density):

 $\Omega_{\nu}h^2 \simeq \frac{\sum m_{\nu}}{93 \text{ eV}}$

Largest effect is to change the expansion rate

Effective relativistic species

Hou, Keisler, Knox et al. 2011

Effective relativistic species

Frollin, Knox, Millea, Pan 2015

Γ.

Warning: neutrino mass 'mops' up systematics

MacCrann et al. 2014

Lensing potential Planck Collab 2015 $(B^{WF}(Data))$

ACTPol, Allison et al 2015

CMB lensing constrains neutrino mass to < 0.7 eV

POLARBEAR detected EE/EB lensing a 4 sigma (2014)

4-pt reconstruction but also in cross-correlation

WISE quasars: $b_{\text{fixed}} = 1.61 \pm 0.22$

One example: SPTPol (Greach et al. 2015)

Anisotropies to Polarisation

Relating E, B to Stokes parameters Q,U

O Serkely 😥 😥 Liverford IAS----- 🎇 🚳 NGT 🔞 🕏 O Serkely 🖉 Erkely 💃 🖳 💥 🖗 Renn 🚱 🧐

THE ATACAMA COSMOLOGY TELESCOPE: CMB POLARIZATION AT $200 < \ell < 9000$

 SIGURD NAESS¹, MATTHEW HASSELFIELD^{2,3}, JEFF MCMAHON⁴, MICHAEL D. NIEMACK⁵, GRAEME E. ADDISON³, PETER A. R. ADE⁵, RUPERT ALLISON¹, MANDANA AMIRI³, ANDREW BAKER⁷, NICK BATTAGLIA⁸, JAMES A. BEALL⁹, FRANCESCO DE BERNARDIS⁵, J RICHARD BOND¹⁰, JOE BRITTON⁹, ERMINIA CALABRESE¹, HSIAO-MEI CHO⁹, KEVIN COUGHLIN⁴, DEVIN CRICHTON¹¹, SUDEEP DAS¹², RAHUL DATTA⁴, MARK J. DEVLIN¹³, SIMON R. DICKER¹³, JOANNA DUNKLEY¹, ROLANDO DÜNNER¹⁴, JOSEPH W. FOWLER⁹, ANNA E. FOX⁹, PATRICIO GALLARDO^{5,14}, EMILY GRACE¹⁵, MEGAN GRALLA¹¹, AMIR HAJIAN¹⁰, MARK HALPERN³, SHAWN HENDERSON⁵, J. COLIN HILL², GENE C. HILTON⁹, MATT HILTON¹⁶, ADAM D. HINCKS³, RENÉE HLOZEK², PATTY HO¹⁵, JOHANNES HUBMAYR⁹, KEVIN M. HUFFENBERGER¹⁷, JOHN P. HUGHES⁷, LEOPOLDO INFANTE¹⁴, KENT IRWIN¹⁸, REBECCA JACKSON^{4,19}, JEFF KLEIN¹³, BRIAN KOOPMAN⁵, ARTHUR KOSOWSKY²⁰, DALE LI⁹, THIBAUT LOUIS¹, MARIUS LUNGU¹³, MATHEW MADHAVACHERIL²¹, TOBIAS A. MARRIAGE¹¹, LOÏC MAURIN¹⁴, FELIPE MENANTEAU^{22,23}, KAVILAN MOODLEY¹⁶, CHARLES MUNSON⁴, LAURA NEWBURGH¹⁵, JOHN NIBARGER⁹, MICHAEL R. NOLTA¹⁰, LYMAN A. PAGE¹⁵, CHRISTINE PAPPAS¹⁵, BRUCE PARTRIDGE²⁴, FELIPE ROJAS¹⁴, BENJAMIN SCHMITT¹³, NEELIMA SEHGAL²¹, BLAKE D. SHERWIN²⁵, JON SIEVERS^{26,10}, SARA SIMON¹⁵, DAVID N. SPERGEL², SUZANNE T. STAGGS¹⁵, ERIC R. SWITZER^{27,10}, ROBERT THORNTON^{28,13}, HY TRAC⁸, CAROLE TUCKER⁶, ALEXANDER VAN ENGELEN²¹, JON WARD¹³, EDWARD J. WOLLACK²⁷

Draft: May 22, 2014

What the data look like

Naess et al. 2014

Neutrino constraints will improve greatly with future small-scale experiments

Atacama

Slide from Jo Dunkley

California+ South Africa C-BASS 5 GHz

Tenerife (+South Africa?)

QUIJOTE 11, 13, 17, 19 GHz (2015/16 - 30, 40 GHz)

California

B-Machine 40 GHz

Slide from Jo Dunkley

To larger surveys over much of the sky

Slide adapted from Jo Dunkley

AdvACT

Four multichroic detector arrays with five bands – $30 \rightarrow 230$ GHz

AdvACT: Cosmological Forecasts

Summary

