< ロト (母) (ヨ) (ヨ) (ヨ) (ヨ)

Detection of the 2 Kelvin Cosmic ν Background

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

43rd SLAC Summer Institute - The Universe of Neutrinos

Thu Aug 20, 2015

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Figure: Flux density at earth's surface due to natural and reactor neutrinos (Eur. Phys. J. H **37**, 515 (2012) ,arXiv:1207.4952 [astro-ph.IM])

- The CvB is a degenerate Fermi sea of neutrinos that filled the universe [S. Weinberg, Phys. Rev. 128, 1457 (1962)]
- Decoupled from photons, baryons, etc. at $t \sim 1s~(T^{
 u}_{dec} \sim 1 MeV)$
- Current temperature of CvB is about 2K(~ 0.1meV)
- Current density (all flavors of ν and $\bar{\nu}$ combined) $n \sim 300 cm^{-3}$
- Flavor states decohered ⇒ currently in mass eigenstates

・ロト ・ 日本・ ・ 日本・

- 31

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Introduction	Proposed experiments	Our Ideas	Conclusions

Proposed experiments

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Our Ideas

ヘロト ヘヨト ヘヨト

3

β endpoint experiments: Method

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

will distort the β decay tail

β endpoint experiments: PTOLEMY

Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield (PTOLEMY)

Target: Large active target ~1MCi (100 grams of Tritium)

- Energy Resolution: High resolution ($\Delta E < m_{\nu}$) required for signal-background separation. Neutrino mass mixing parameters indicate mass eigenstates at least as massive as 0.05 eV while cosmological bounds < 0.3 eV. Radio-Frequency techniques strive to reach sub-eV energy resolution.
 - Background: Below microHertz of background rate in signal region (PTOLEMY expected signal rate of approximately 0.3 μ Hz of neutrino capture events)

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Indirect detection by atomic de-excitation

Energy level diagram [Phys. Rev. D 75, 113007]

Spectral distortion caused by Pauli blocking of relic neutrinos assuming the lightest neutrino mass is 5 meV, $\epsilon_{eg} = 11$ meV and zero chemical potential.

- Radiative emission of neutrino pairs (RENP) can happen as atoms de-excite from a metastable state.
- Use laser to enhance emission probability.
- Compare LH and RH circular polarizations to reject non-parity-violating (non-weak) backgrounds (i.e. photon emission).
- Expected rate for 10^{16} atoms $\sim 1/\text{day.}$
- RENP spectrum is modified in the presence of ambient relic neutrinos by a factor of $(1 f_i)(1 \overline{f_j})$, where $f_i(\overline{f_j})$ is the momentum distrubution function of mass eigenstate $\nu_i(\overline{\nu_j})$.
- Various caveats such as finding the right atom. No experiment has looked for this process.

[Phys. Rev. D 91, 063516]

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Introduction	Proposed experiments	Our Ideas	Conclusions
	Our Id	eas	

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Superconductor experiments

- The binding energy of Cooper pairs in superconductors is $\mathcal{O}(\text{meV})$.
- Held near its transition temperature, depositions of this order of energy create sharp changes in the resistance of the semiconductor.
- Intriguingly, this is the same order of energy as the average neutrino in the $C\nu B.$
- However, even electrons are much more massive than neutrinos that only a tiny fraction of the neutrino energy is transferred in elastic scattering at $C\nu B$ energies, so this idea does not apply well to the question.
- This idea is pursued in the context of light WIMP detection by Hochberg et al. (1504.07237).

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Proton-Stimulated Inverse β Decay

What if we invert the energy distribution of a typical Inverse Beta Decay neutrino experiment?

The rate of inverse beta decay in the laboratory frame is

$$\Gamma \sim 10^{-27} \left(rac{E_{
ho}}{GeV}
ight)^2 N_{particles} Hz$$

For nominal beam parameters (e.g. the high-luminosity LHC) with $E_p \sim 7$ TeV and $\sim 3 \times 10^{15}$ particles per beam (and two beams),

$$\Gamma\sim 2\times 10^{-4} \text{Hz}$$

which is \sim 24 events per day along the entire 27 km in circumference.

This comes with significant experimental challenges:

- $\bullet\,$ For 100 events per year, we then only have to instrument ${\sim}300$ m of beam tube cumulatively
- Background primarily high energy neutrinos; need at least 100 keV resolution to resolve separate cosmic neutrino signal
- We need high (>90%) reconstruction efficiency for coincident neutron-positron pairs

k

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Introduction	Proposed experiments	Our Ideas	Conclusions
However			

This experiment would be looking to detect proton Inverse β Decay

$$p + ar{
u}_e^{C
u B} \longrightarrow n + e^+$$

Which is allowed only if the center-of-mass energy is above the threshold

$$\sqrt{s} \geq M_n + m_e - M_
ho - m_
u \simeq M_n + m_e - M_
ho \simeq 1.80$$
 MeV

For $E_{\nu^{C\nu B}} \simeq m_{\nu}$ we have $\sqrt{s} = \sqrt{2E_{p}m_{\nu}}$ so that a proton beam with energy E_{p} can only observe this process if

$$m_
u \geq rac{(M_n+m_e-M_p)^2}{2E_p} \quad ext{i.e.} \quad m_
u[ext{eV}] \gtrsim rac{1.63}{E_p[ext{TeV}]}$$

This means that LHC ($E_p \sim 7 TeV$) can only probe m_{ν} regions of $m_{\nu} \gtrsim 0.23$ eV; however, it's close. If next generation of accelerators were to have a beam energy that was higher by a factor of 5 or more, we would be guaranteed to be above threshold for at least one neutrino.

イロト 不聞 とうき とうせい ほう

Outtakes: Ideas that didn't quite pan out

Detection of W^{\pm} peak from $e^- + \nu_e^{C\nu B}$ scattering: can be performed at $e^$ accelerator. Required beam energy is YeV i.e. 10^{24} eV to achieve $\sqrt{s} \sim 100$ GeV. ν accelerator can look for Z^0 peak with same energy issue, cleaner signuture but need ν beam. Annual modulation of deflection of torsion pendulum: A Cavendish-type torsion balance that measures the "cosmic ν wind" due to the solar system motion through the galaxy. We need 2-3 orders

$$\begin{split} \text{magnitude higher percision than today's technology.} \\ \texttt{"1}\nu\beta\beta\texttt{"}: \text{ Idea is to detect } {}^{A}_{Z}X + \nu^{C\nu B}_{e} \rightarrow^{A}_{Z+2}Y + \bar{\nu}_{e} + 2e^{-} \text{ at } 0\nu\beta\beta \\ \text{experiments; hope is to exclude energetic } \nu \text{ because} \\ {}^{A}_{Z}X + \nu^{C\nu B}_{e} \rightarrow^{A}_{Z+1}Z + e^{-} \text{ is above threshold.} \end{split}$$

 $Rate_{1\nu\beta\beta}/Rate_{2\nu\beta\beta} \sim 10^{-21}$

Ultrarelativistic water Čerenkov detector: Idea is to detect $\nu^{C\nu B}$ by being in a reference frame in which the products of their interactions emit Čerenkov light. Requires a detector to be moving really fast.

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つくぐ

Introduction	Proposed experiments	Our Ideas	Conclusions

Conclusions

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong

Introduction	Proposed experiments	Our Ideas	Conclusions
A I I			

Conclusions

- There is increasing interest in a $C\nu B$ experiment due to advances in low-background and high-resolution detector technology
 - For current technologies, cost and detector mass are the main current limitations
 - The first cosmic neutrino detector will have to be very different from our current neutrino detectors!
- Current proposals include ideas from particle physics, condensed matter and atomic physics
- Many of these ideas may need to wait for significant technological advances
 - If we could generate YeV particle beams, many of the experiments would be immediately feasible with reasonable detector masses
 - Very high energy resolution is a requirement for any cosmic neutrino detector, given the unavoidable background from cosmogenic neutrinos and other low-background processes

M. Colò, J.A. Dror, K. Ghorbani, A. Kheirandish, M. Klimek, S. Kohn, N. Kurinsky, X. Li, H. Wong