Neutrino CPV phase and Leptogenesis

Andrew, Brandon, Erika, Larry, Varuna, Wing

The Question

How can the CP-violating phase in the neutrino mixing matrix, delta, possibly be related to leptogenesis?

Can you make a model where this is transparent and has testable predictions?

What is it?

- Experiments have observed an asymmetry in the number of baryons versus anti-baryons in the universe
- Leptogenesis The process of generating baryogenesis through lepton asymmetry
- This lepton asymmetry is converted into a baryon asymmetry by the sphaleron process
- Leptogenesis is a mechanism that attempts to explain the observed asymmetry
 - Many different models of Leptogenesis exist
 - We only consider Leptogenesis with Type I Seesaw

Sakharov Conditions

Three conditions for dynamically generated baryon asymmetry:

- I. Baryon (and lepton) Number Violation
- II. C and CP Symmetry Violation

$$\Gamma(A \to B) \neq \Gamma(\overline{A} \to \overline{B})$$

III. Interactions out of Thermal Equilibrium

$$\Gamma(A \to B) \neq \Gamma(B \to A)$$

Seesaw Mechanism

• Introduce three right-handed heavy neutrinos, N_{Ri} with the following Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM} + (1/2)N_R^T M N_R + (\nu_{Lf}^T H^0 - \ell_{Lf} H^-) \lambda_{fi} N_{Ri} + \text{h.c.}$$

- The Majorana mass matrix M is diagonal, the Yukawa matrix may be complex, and the Higgs will give a Majorana mass term to the neutrinos after symmetry breaking
- This gives a mass to the light neutrinos: $m \sim \frac{v^2 \lambda^2}{M}$
- For 0.1 eV light neutrinos and taking λ at the GeV scale, that gives a heavy mass scale of 10¹⁰ GeV

Seesaw Mechanism

- Self energy diagram showing flavor change at high energy
- The interaction can be described by:

$$\lambda_{fi} M_{ii}^{-1} \lambda_{if'}^T$$

 Self energy diagram at low energy with the heavy fields integrated out

 Creates an effective point interaction that can be described by:

$$U_{fa}m_{aa}U_{af'}^{T}$$

Seesaw Mechanism

 Relating the high and low energy interactions, we can write the following:

$$v^{2}\lambda^{T}M^{-1}\lambda = v^{2}\lambda^{T}M^{-1/2}RR^{T}M^{-1/2}\lambda = U^{*}m^{1/2}m^{1/2}U^{\dagger}$$

 Where R is orthogonal but may be complex (Casas-Ibarra parametrization); it reshuffles and re-phases the flavors.
 Then we get:

 $\lambda = \frac{1}{v} \sqrt{M} R \sqrt{m} U^{\dagger}$

• If we see phases in U, then we are generically likely to see phases in λ . This is the connection between the high and low energy scales.

Leptogenesis at High Energy

 The lepton asymmetry is generated by decays of the heavy neutrinos in to Higgs and leptons

- To get CP violation, higher order diagrams must be included
- For the CP conjugate process, the cross terms will usually be different giving a different rate due to the phases in λ

Define asymmetry that drives leptogenesis:
$$\epsilon_f = \frac{\Gamma(N_1 \to H + \ell_f) - \Gamma(N_1 \to \overline{H} + \overline{\ell_f})}{\Gamma(N_1 \to H + \ell_f) + \Gamma(N_1 \to \overline{H} + \overline{\ell_f})} \quad {}^8$$

CP Violation at Low Energy

 The following interaction allows for low energy CP violation:

$$\begin{array}{c}
\mathbf{V}_{\mathsf{f}} & \mathbf{V}_{\mathsf{f}} \\
\Gamma(\nu_{e} \to \nu_{\mu}) - \Gamma(\overline{\nu_{e}} \to \overline{\nu_{\mu}}) \sim \sum_{ij} Im \left(U_{ei}^{*} U_{\mu i} U_{ej} U_{\mu j}^{*} \right)
\end{array}$$

- Thus CP violation requires at least one matrix element in U to be complex
- The "Dirac" phase, δ_{CP} , is enough to produce CP violation
- There also exist two "Majorana" phases that also can produce CP violation

The Connection

- If the Yukawa matrix has the appropriate phases it can generate leptogenesis in the early universe
- If the PMNS matrix has non-zero CP violating phases, then the required CP violation will occur at low energy

$$\lambda = \frac{1}{v} \sqrt{M} R \sqrt{m} U^{\dagger}$$

- Since phases in one matrix generically imply phases in the other, we can conclude that in this model CP violation at low energy can imply leptogenesis at high energy
- For each flavor, the asymmetry can be written as follows:

$$\epsilon_{\alpha} = -\frac{3M_1}{16\pi v^2} \frac{Im\left(\sum_{\beta\rho} m_{\beta}^{1/2} m_{\rho}^{3/2} U_{\alpha\beta}^* U_{\alpha\rho} R_{1\beta} R_{1\rho}\right)}{\sum_{\beta} m_{\beta} |R_{1\beta}|^2}$$

Baryon Asymmetry Plots

FIG. 1. The invariant $J_{\rm CP}$ versus the baryon asymmetry varying (in blue) $\delta = [0, 2\pi]$ in the case of hierarchical RH neutrinos and NH light neutrino mass spectrum for $s_{13} = 0.2$, $\alpha_{32} = 0$, $R_{12} = 0.86$, $R_{13} = 0.5$ and $M_1 = 5 \times 10^{11}$ GeV. The red region denotes the 2σ range for the baryon asymmetry.

FIG. 2. The baryon asymmetry $|Y_{\rm B}|$ versus the effective Majorana mass in neutrinoless double beta decay, $\langle m_{\nu} \rangle$, in the case of Majorana CP-violation, hierarchical RH neutrinos and IH light neutrino mass spectrum, for $\delta = 0$, $s_{13} = 0$, purely imaginary $R_{11}R_{12}$, $|R_{11}| = 1.05$ and $M_1 = 2 \times 10^{11}$ GeV. The Majorana phase α_{21} is varied in the interval $[-\pi/2, \pi/2]$.

- Plots showing the possible variation of CP violation in the PMNS matrix versus the produced baryon asymmetry from the model
- Red band denotes the two sigma range for the observed baryon asymmetry

Experimental Tests – Long Baseline

- Long Baseline Neutrino Oscillation experiments have the potential to measure δ_{CP}
- Experiments measure δ_{CP} through the difference in v_{μ} to v_{e} versus \overline{v}_{μ} to \overline{v}_{e} oscillations

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}(\theta_{23})\sin^{2}(2\theta_{13})\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \qquad \begin{array}{c} -0.5 \\ -1 \\ 0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2 \quad 0.25 \quad 0.3 \quad 0.35 \quad 0.85 \\ \sin^{2}(2\theta_{13})\sin(2\theta_{23}) \\ -2\sin(\theta_{23}) & \sin\left(\frac{\Delta m_{21}^{2}L}{4E}\right)\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right)\sin^{2}(2\theta_{13})\sin(\delta_{CP}) \end{array}$$

Plus higher order terms including a CP even term, matter effects, etc.

Experimental Tests – 0νββ

- Neutrino-less double beta decay can determine if neutrinos are Majorana fermions
- If neutrinos are Majorana:
 - There exists two more CP violating phases in the PMNS matrix which could contribute to leptogenesis
 - Strengthens the case for the Seesaw mechanism for neutrino masses and leptogenesis
- Direct information on the Majorana phases, α , may come from the effective Majorana mass:

$$\sin^2(\alpha_{21}/2) \simeq \left(1 - \frac{|\langle m_{\nu} \rangle|^2}{m^2}\right) \frac{1}{\sin^2(2\theta_{12})}$$

Conclusions

- This is one model to drive leptogenesis and thus baryogenesis
- We have shown one possible connection between the high energy decays of heavy neutrinos with the low energy PMNS matrix
- Some caveats:
 - The CP violation in the PMNS matrix might not be enough to generate the observed amount by experiment
 - CP violation at low energy does not require leptogenesis to occur
 - Conclusions are model dependent, for example the model presented here requires all three lepton flavors to be correctly accounted for in the Boltzmann equations
- Measurements of oscillation parameters and neutrino-less double beta decay could exclude or strengthen the model of leptogenesis

References

- Connecting Low Energy Leptonic CP-violation to Leptogenesis: http://arxiv.org/pdf/hep-ph/0609125v3.pdf
- Leptogenesis and Low Energy CP Violation in Neutrino Physics: http://arxiv.org/pdf/hep-ph/0611338v2.pdf
- Leptonic CP Violation and Leptogenesis: http://arxiv.org/pdf/1405.2263v1.pdf

Back Up Slides

Neutrino Oscillations and CP violation

- We know from neutrino oscillation experiments that neutrinos can change flavor states while propagating.
- We can search for CP violation in the leptonic sector by observing the asymmetry of probabilities for flavor oscillation.

$$A_{\rm CP}^{(l'l)} \equiv P(\nu_l \to \nu_{l'}) - P(\bar{\nu}_l \to \bar{\nu}_{l'}) \,, \quad A_{\rm T}^{(l'l)} \equiv P(\nu_l \to \nu_{l'}) - P(\nu_{l'} \to \nu_{l}) \,.$$

 These probabilities can be measured from current neutrino oscillation experiments.

Leptogenesis and CP violation

The heavy neutrino N_R can interact to produce

 In order to violate CP, we expect to see an asymmetry in these processes. This would lead to an observed asymmetry in lepton number

$$Y_{\mathcal{L}} \simeq (\epsilon_1/g_*) \eta (\widetilde{m_1})$$

Where η is the effective reversal of total lepton asymmetry due to inverse decays, g_{*} is our relativistic relativistic degrees of freedom, $\widetilde{m_1}=(\lambda\lambda^\dagger)_{11}v^2/M_1$, $\lambda_{i\alpha}$ is our Yukawa couplings to N_R, and

$$\epsilon_1 \equiv \frac{\sum_{\alpha} [\Gamma(N_1 \to H\ell_{\alpha}) - \Gamma(N_1 \to \overline{H\ell}_{\alpha})]}{\sum_{\alpha} [\Gamma(N_1 \to H\ell_{\alpha}) + \Gamma(N_1 \to \overline{H\ell}_{\alpha})]}_{8}$$

Leptogenesis + flavor effects

 Analysis presented in the previous slide corresponds to "one-flavor" leptogenesis, which is valid for

- As the universe cooled, lepton flavors become distinguishable at different times. The total lepton asymmetry will have contributions from each flavor independently; only interactions of the same flavor can reverse the flavor's contribution to total lepton asymmetry.
- Summing over one flavor with some redefined parameters relative $\epsilon_{\alpha} = -\frac{3M_1}{16\pi v^2} \frac{\mathrm{Im}\left(\sum_{\beta\rho}m_{\beta}^{1/2}m_{\rho}^{3/2}U_{\alpha\beta}^{*}U_{\alpha\rho}R_{1\beta}R_{1\rho}\right)}{\sum_{\beta}m_{\beta}\left|R_{1\beta}\right|^{2}}$

Assumptions

- The matrix R has real or purely imaginary elements
- Heavy Majorana neutrinos possess a hierarchical mas spectrum

M1 has a value in the interval

 $10e9 \text{ GeV} \leq M1 \leq 10e12 \text{ GeV}$,

where (in the charged-lepton sector of the SM) only the interaction mediated by the τ Yukawa coupling is in equilibrium

Leptogenesis + flavor effects ctd.

Final baryon asymmetry is well approximated
 by
 12 ((417) (390))

$$Y_B \simeq -\frac{12}{37g_*} \left(\epsilon_2 \, \eta \left(\frac{417}{589} \, \widetilde{m_2} \right) + \epsilon_\tau \, \eta \left(\frac{390}{589} \, \widetilde{m_\tau} \right) \right) \, ,$$

where $\epsilon_2 = \epsilon_e + \epsilon_\mu$, $\widetilde{m_2} = \widetilde{m_e} + \widetilde{m_\mu}$ and

$$\eta\left(\widetilde{m_l}\right) \simeq \left(\left(\frac{\widetilde{m_l}}{8.25 \times 10^{-3} \,\mathrm{eV}}\right)^{-1} + \left(\frac{0.2 \times 10^{-3} \,\mathrm{eV}}{\widetilde{m_l}}\right)^{-1.16}\right)^{-1}.$$

Wash-out mass parameter:

$$\left(\frac{\widetilde{m_l}}{3 \times 10^{-3} \,\mathrm{eV}}\right) \equiv \frac{\Gamma(N_1 \to H \, l)}{H(M_1)},$$

$$\widetilde{m_l} \equiv \frac{|\lambda_{1l}|^2 \, v^2}{M_1} = \left|\sum_k R_{1k} m_k^{1/2} U_{lk}^*\right|^2, \quad l = e, \mu, \tau.$$

Example: Normal ordering

Figure 1: The baryon asymmetry Y_B as a function of R_{12} in the case of real R_{12} and R_{13} , sign $(R_{12}R_{13})=+1$ $(\beta_{23}=0)$, $R_{12}^2+R_{13}^2=1$, $s_{13}=0.20$, hierarchical RH neutrinos and NH light neutrino mass spectrum and a) Majorana CP-violation (blue line), $\delta=0$ and $\alpha_{32}=\pi/2$ $(\kappa=+1)$, and b) Dirac CP-violation (red line), $\delta=\pi/2$ and $\alpha_{32}=0$ $(\kappa'=+1)$, for $M_1=5\times 10^{11}$ GeV. The neutrino oscillation parameters Δm_{\odot}^2 , $\sin^2\theta_{12}$, $\Delta m_{\rm A}^2$ and $\sin^22\theta_{23}$ are fixed at their best fit values.

Figure 5: The baryon asymmetry $|Y_B|$ as a function of the Dirac phase δ varying in the interval $\delta=[0,2\pi]$ in the case of Dirac CP-violation, $\alpha_{32}=0$; 2π , hierarchical RH neutrinos and NH light neutrino mass spectrum, for $M_1=5\times 10^{11}$ GeV, real R_{12} and R_{13} satisfying $|R_{12}|^2+|R_{13}|^2=1$, $|R_{12}|=0.86$, $|R_{13}|=0.51$, sign $(R_{12}R_{13})=+1$, and for i) $\alpha_{32}=0$ ($\kappa'=+1$), $s_{13}=0.2$ (red line) and $s_{13}=0.1$ (dark blue line), ii) $\alpha_{32}=2\pi$ ($\kappa'=-1$), $s_{13}=0.2$ (light blue line).

Figure 2: The same as in Fig. \square but for sign $(R_{12}R_{13})=-1$ $(\beta_{23}=\pi)$ and a) Majorana CP-violation (blue line), $\delta=0$ and $\alpha_{32}=\pi/2$ $(\kappa=-1)$, and b) Dirac CP-violation (red

Figure 6: The correlation between the rephasing invariant $J_{\rm CP}$ (in blue) and the baryon asymmetry $Y_{\rm B}$ when varying the Dirac phase $\delta=[0,2\pi]$, in the case of hierarchical RH neutrinos and NH light neutrino mass spectrum and for $s_{13}=0.2$, $\alpha_{32}=0$ (2π), $|R_{12}|=0.86$, $|R_{13}|=0.51$, sign $(R_{12}R_{13})=+1$ (-1) ($\beta_{23}=0$ (π), $\kappa'=+1$), $M_1=5\times 10^{11}$ GeV . The red region denotes the 2σ allowed range of $Y_{\rm B}$.

Example: Inverted ordering

Figure 7: The baryon asymmetry Y_B as a function of $|R_{11}|$ in the case of hierarchical RH neutrinos and IH light neutrino mass spectrum, Majorana CP-violation, $\delta=0$ and $\alpha_{32}=\pi/2$, $M_1=2\times 10^{11}$ GeV, purely imaginary $R_{11}R_{12}=i\kappa|R_{11}R_{12}|$ and $\kappa=+1$ (dark blue and red lines), $\kappa=-1$ (light blue and green lines), $|R_{12}|^2-|R_{13}|^2=1$, and for $s_{13}=0.2$ (green and red lines) and $s_{13}=0$ (light and dark blue lines).

Figure 9: The same as in Fig. 8, but for $\kappa = -1$ $(\beta_{12} = 3\pi/2)$ and $|R_{11}| = 1.2$.

Figure 8: The baryon asymmetry as a function of the Majorana phase α_{32} varying in the interval $\alpha_{32}=[0,2\pi]$ in the case of hierarchical RH neutrinos and IH light neutrino mass spectrum, Majorana CP-violation, $\delta=0$, purely imaginary $R_{11}R_{12}=i\kappa|R_{11}R_{12}|$, $\kappa=+1$ ($\beta_{12}=\pi/2$), $|R_{11}|^2-|R_{12}|^2=1$, $|R_{11}|=1.05$, and for $M_1=2\times 10^{11}$ GeV, and two values of s_{13} : $s_{13}=0$ (blue line) and 0.2 (red line).

Figure 10: The baryon asymmetry $|Y_B|$ versus the effective Majorana mass in neutrinoless double beta decay, $|\langle m \rangle|$, in the case of Majorana CP-violation, hierarchical RH neutrinos and IH light neutrino mass spectrum, for $\delta=0$, $s_{13}=0$, purely imaginary $R_{11}R_{12}=i\kappa|R_{11}R_{12}|$, $\kappa=+1$ ($\beta_{12}=\pi/2$), $|R_{11}|^2-|R_{12}|^2=1$, $|R_{11}|=1.05$ and $M_1=2\times 10^{11}$ GeV. The Majorana phase α_{21} is varied in the interval $[-\pi/2,\pi/2]$.