



# EM Standard Status and Plans

V. Ivanchenko, CERN

9 March 2015

### Outline

- New EM parameters schema
- Multiple scattering validation results
- Option4 Physics List configuration
- List of open problems/bug reports
- Standard EM working group plan for 2015

## New EM parameters schema

- In previous versions of Geant4 EM parameters were defined via UI commands and c++ interface G4EmProcessOptions
- Experience with release 10.0 were MT mode has been introduced demonstrates some limitations of both methods
  - G4EmProcessOptions class cannot be instantiated in any place of user code anymore as it was in sequential mode
  - Not all UI commands were effective several cases when parameters were not set at all
- In Geant4 10.1 a new G4EmParameters singleton class is introduced which keeps all EM parameters
  - Parameters are static and shared between threads
  - They may be modified by user at any moment
  - EM processes/models access parameters at initialisation of a run
    - Changings parameters during the run are not applied until the next run

## New EM parameters schema

- After 10.1 was released number of new reports about problems arrived (the recent from D. Sawkey)
- Problems come from the fact that G4EmParameters were introduced just before dead-line for the release and there was an attempt to keep old and new interface
  - There are problems in the case if different parameters are used for different particle type
- Current proposal:
  - Split parameters on two groups:
    - First group of static parameters belonging to G4EmParameters class which are valid for all particle/processes
    - Smaller group of parameters which are different for different particle type/process
      - Step function, number of bins, emin, emax, integral option
  - For the second group if UI command is issued apply this command to all particle/processes in all threads
  - Adiabatically remove G4EmProcessOptions class from examples/tests
- Please, make your validation and report problems

## List of new options

- New interfaces of G4EmParameters:
  - SetMuHadLateralDisplacement
  - SetMscMuhadRangeFactor
  - SetMscMuHadStepLimitType
- Corresponding UI commands:
  - /process/msc/MuHadLateralDisplacement
  - /process/msc/RangeFactorMuHad
  - /process/msc/StepLimitMuHad
- Old commands are working only for e+-
- Can we disable sampling of displacement for LHC and other applications?

## Tests to validate lateral displacement for muons/hadrons

- In the EM testing suite there are few tests which are sensitive to the lateral displacement:
  - MSCL3 displacement radius of high energy muons from the decay Z-> $\mu$ + $\mu$  measured by L3 detector at LEP
  - MSCP 160 MeV proton scattering angles for variety of targets (Gottshalk et al., 1993)
  - Zmumu test prepared by not yet in production (recently delivered by A.Bagulya)



Figure 7: Detector geometry – Cut through the  $r\varphi$ -plane.

top: Schematic of the L3 detector. [http://l3.web.cern.ch/l3/]

bottom: Geometry used in MSCL3.



[Gottschalk et al., 1993]

## L3 test of high energy muons

#### Endpoint Displacement of $\mu^{-}$ in the r $\phi$ Plane

geant4-10-01-ref-02, All MSC models, ARealisticRun, Gaussian fits



- WVI without displacement and WVI default shows no difference
- Opt4 provides the most worse agreement with the data

## Proton thick target test (10.1ref02)



#### Charachteristic Angle Distribution for Aluminium



#### Charachteristic Angle Distribution for Lead



### Option4 Physics List configuration

- It turn out that users are happy with an idea "the best EM Physics List constructor" Opt4
  - There are reports indicating that Opt4 not the best in all cases
  - I would propose that we take this seriously and should really select best physics configuration for Opt4
- Main concerns to the choice of
  - RangeFactor
  - Step limit type for e+-
  - Displacement options
  - Electron ionisation
  - Gamma conversion
  - Compton scattering
- I would suggest to take time thinking, to critically examining, and proposing the best configuration options

## Standard EM working group plan for 2015

- The draft is done using proposals of EM working group members:
  - http://geant4.cern.ch/collaboration/working\_groups/electromagnetic/plan2015.txt
- There are several problems which we need to address:
  - Displacement beyond boundary needs fix or full re-thinking
  - If we will introduce e+ corrections proposed by Laszlo we will need also extend validation
  - Introduce web base tool for better handling of validation results
  - Polarisation sub-library needs support
- List of unresolved problem reports
  - #1698 Polarization Asymmetries are different in the latest GEANT4 releases
  - #1702 Zero backscattering of electrons from solid media
  - #1711 Bug in the production of Cherenkov photons