Few words on sampling

Preliminary resu

Conclusion and plans

Review of Geant4 Goudsmit-Saunderson model

Mihály Novák CERN PH-SFT (simulation group)

09-03-2015

э

A D F A B F A B F A B F

Few words on sampling

Preliminary res

Conclusion and plans

Outline

・ロト・日本・山下・山下・山下

Few words on sampling

Preliminary resu

Conclusion and plans

Outline

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

イロト イボト イヨト イヨト

Few words on sampling

Preliminary results

• □ ▶ • □ ▶ • □ ▶

Conclusion and plans

Outline

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Few words on sampling

Preliminary results

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion and plans

Outline

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Few words on sampling

Preliminary results

Conclusion and plans

Outline

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

< /i>
↓ /□ ▶

Few words on sampling

Preliminary results

Conclusion and plans

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS

Mihály Novák

• Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

5 Conclusion and plans

< ロ > < 同 > < 三 > < 三)

Few words on sampling

Motivation:

- looking for candidate model for multiple elastic scattering of low energy (< 100[MeV]) electrons/positrons that can be used for optimization/vectorization within the Geant-V project 1
- Kawrakow-Bielajew model is investigated as the first candidate
- one version of this model is currently available in Geant4
- a different version is under implementation in Geant4 only for testing purposes

What's this presentation about?

- the new version of the model
- the model involves sampling from pre-computed distributions stored in table over a 2D parameter grid
- some advanced sampling techniques are used in the new version that are not frequently used in Geant4 however accurate, fast sampling can be achieved by using them
- these techniques will be discussed as well

What it's not about?

- this is not a code review III
- the currently available Geant4 version of the model won't be discussed or jugged
- the presentation will mainly focus on modelling of angular sampling and other parts like energy loss correction, computation of Lewis's moments are not discussed [but taken into account in the new version in a self consistent way]

Additional remark: detailed discussion of the theory itself would take more than 20 minutes so we will run through that very quickly and will focus on more practical issues. [However, information on the "theory" slides for more detailed study is available イロト イポト イヨト イヨト э

¹http://geant.cern.ch/content/about-geant5

Few words on sampling

Preliminary results

Conclusion and plans

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

5 Conclusion and plans

Geant4 Goudsmit-Saunderson model is the

• Kawrakow-Bielajew model for elastic scattering

[I.Kawrakow, A.F.Bielajew, NIMB 134(1998)325-336]

- based on Goudsmit-Saunderson theory of multiple elastic scattering [S.Goudsmit,J.L.Saunderson, PR 57(1940)24-29]
- hybrid model for (no, single) and multiple elastic scattering of e^-/e^+ [A.F.Bielajew, NIMB 111(1996)195-208]
- the screened Rutherford DCS is used for elastic scattering

ъ

メロト メタト メヨト メヨト

Theoretical background in a nutshell ••••••••

Few words on sampling

Preliminary results

Conclusion and plans

Goudsmit-Saunderson(GS) theory

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

イロト イポト イヨト イヨト

Goudsmit-Saunderson(GS) theory

Goudsmit-Saunderson angular distribution after travelling a path s:

$$F(s; heta)_{GS} = \sum_{\ell=0}^{\infty} rac{2\ell+1}{4\pi} \exp(-s/\lambda_\ell) P_\ell(\cos(heta))$$

- $\frac{d\sigma}{d\Omega}$ -elastic DCS; $\sigma = \int \frac{d\sigma}{d\Omega} d\Omega$ -elastic cross section; $\lambda^{-1} = \mathcal{N}\sigma$ -elastic mean free path
- $f_1(\theta) = \frac{1}{\sigma} \frac{d\sigma}{d\Omega}$ is single elastic scattering distribution (note that $2\pi f_1(\theta) = 2\pi \frac{1}{\sigma} \frac{d\sigma}{d\Omega} = p(\cos(\theta))$) $f_1(\theta)$ is expressed in terms of orthogonal polynomials (Legendre series) $f_1(\theta) = \sum_{\alpha} \sum_{\alpha} \frac{2\ell+1}{\sigma} \sum_{\alpha} p(\cos(\theta))$

$$\Gamma_1(\theta) = \sum_{\ell=0}^{1} \frac{2\ell+1}{4\pi} F_\ell P_\ell(\cos(\theta))$$

•
$$F_{\ell} = 2\pi \int_{-1}^{1} f_1(\theta) P_{\ell}(\cos(\theta)) d(\cos(\theta)) = \langle P_{\ell}(\cos(\theta)) \rangle$$

• G_{ℓ} are the ℓ -th transport coefficients $G_{\ell} \equiv 1 - F_{\ell} = 1 - \langle P_{\ell}(\cos(\theta)) \rangle$

•
$$\lambda_{\ell}^{-1} \equiv \frac{G_{\ell}}{\lambda} = \frac{1 - F_{\ell}}{\lambda} = \frac{1 - \langle P_{\ell}(\cos(\theta)) \rangle}{\lambda}$$

- then $F(s; \theta) = \sum_{n=0}^{\infty} f_n(\theta) \mathcal{W}_n(s)$
- $f_n(\theta)$ the angular distribution after *n* elastic interactions $f_n(\theta) = \sum_{\ell=0}^{\infty} \frac{2\ell+1}{4\pi} (F_\ell)^n P_\ell(\cos(\theta))$
- $W_n(s) = \exp(-s/\lambda) \frac{(s/\lambda)^n}{s}$ is the probability of having exactly *n* elastic interaction along a path *s* (i.e. Poisson)

[[]S.Goudsmit, J.L.Saunderson, PR 57(1940)24-29; J.M.Fernández-Varea, R.Mayol, J.Baró, F.Salvat NIMB 73(1993)447-473] >

Few words on sampling

Preliminary results

Conclusion and plans

Combination of GS-theory with screened Rutherford DCS

Contents

Motivation, about, not about

- Difference Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

イロト イポト イヨト イヨト

Combination of GS-theory with screened Rutherford DCS

Using a simple exponentially screened Coulomb potential as the scattering potential in the computation of the scattering amplitudes under the first Born approximation(Wentzel model):

- $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f|^2$ where $f \equiv f(\theta, \phi)$ is the scattering amplitude
- which $f_{B1}(\theta, \phi) = -\frac{2m}{4\pi\hbar^2} \int e^{i(\vec{k}_f \vec{k}_i)\vec{r}'} V(\vec{r}') d^3r'$ in the first Born approximation [where: \vec{k}_i, \vec{k}_r and $V(\vec{r}')$ are the wave vectors of the incident plane, the outgoing(scattered) spherical spherical wave and the scattering potential respectively. Note that: (*i*) in case of elastic scattering $k_i = k_r \equiv k$; (*ii*) $\hbar \vec{q} = \hbar(\vec{k}_r \vec{k}_i)$ is the momentum transfer and $q^2 = |\vec{k}_r \vec{k}_i|^2 = 2k^2(1 \cos(\theta)) = 2k^2(2\sin^2(\theta/2))$ where $\theta \equiv \angle(\vec{k}_i, \vec{k}_r)$ is the scattering angle]
- assuming $V(\bar{r}) \equiv V(r)$ i.e. spherically symmetric scattering potential, substituting $\bar{q} = \bar{k}_f \bar{k}_i$ and choosing the coordinate system for the integration such that $\bar{q} = q\hat{\bar{z}}$ $f_{B1}(\theta) = -\frac{2m}{q\hbar^2} \int_0^\infty \sin(qr')r' V(r') dr'$
- then using a simple exponentially screened Coulomb potential as the scattering potential i.e. $V(r) = \frac{ZZ'e^2}{r}e^{-r/R} [z \text{ target atomic number, } Z'e \text{ projectile charge, } R \text{ screening radius}] \text{ We Can get}$ $f_{B1}(\theta) = -\frac{2m}{\hbar^2}ZZ'e^2 \left[\frac{1}{2k^2[1-\cos(\theta)+R^{-2}/(2k^2)]}\right]$ • which gives $\frac{d\sigma}{d\Omega}^{(W)} = \left(\frac{ZZ'e^2}{\rho c\beta}\right)^2 \frac{1}{(1-\cos(\theta)+R^{-2}/(2k^2))^2}$ • one can introduce $A \equiv \frac{1}{4} \left(\frac{\hbar}{\rho}\right)^2 R^{-2}$ screening parameter [note that $1/(2k^2R^2) = 2A$] that gives the DCS for elastic scattering $\frac{d\sigma}{d\Omega}^{(W)} = \left(\frac{ZZ'e^2}{\rho c\beta}\right)^2 \frac{1}{(1-\cos(\theta)+2A)^2}$ and the corresponding

Motivation, about, not about	Theoretical background in a nutshell	Few words on sampling	Preliminary results	Conclusion and plans
Combination of GS-theory with scre	ened Rutherford DCS			

So DCS for elastic scattering within the Wentzel model is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(W)} = \left(\frac{ZZ'e^2}{\rho c\beta}\right)^2 \frac{1}{(1-\cos(\theta)+2A)^2}$$

•
$$\sigma^{(W)} = \left(\frac{ZZ'e^2}{\rho c\beta}\right)^2 \frac{\pi}{A(1+A)}$$

•
$$f_1^{(W)}(\theta) = \frac{1}{\pi} \frac{A(1+A)}{(1-\cos(\theta)+2A)^2}$$

•
$$G_{\ell}^{(W)}(A) = 1 - F_{\ell} = 1 - \ell [Q_{\ell-1}(1+2A) - (1+2A)Q_{\ell}(1+2A)] [Q_{\ell}(x) \text{ are Legendre functions of the second kind}]$$

•
$$G_{\ell=1}^{(W)}(A) = 2A \left[\ln \left(\frac{1+A}{A} \right) (A+1) - 1 \right]$$

• note that $\frac{1}{\lambda_1} = \frac{G_{\ell=1}^{(W)}(A)}{\lambda}$ gives the possibility set the screening parameter A such that the corresponding DCS $\frac{d\sigma}{d\Omega}^{(W)}$ will give back λ_1 [therefore e.g. $\langle \cos(\theta) \rangle = \exp(-s/\lambda_1)$ will be correct]

・ロン ・回と ・ヨン・

Motivation,	about,	about	

Few words on sampling

Preliminary results

Conclusion and plans

Kawrakow-Bielajew theory

Contents

Motivation, about, not about

- Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

▲ロト▲母ト▲目ト▲目ト 目 のへの

Few words on sampling

Kawrakow-Bielajew theory

0

First derive Bielajew's hybrid form of the GS distribution i.e. separate the no, single and at least two elastic scattering contributions:

$$\mathcal{W}_{n=0}(s) = \exp(-s/\lambda); \ \mathcal{W}_{n=1}(s) = \exp(-s/\lambda)(s/\lambda); \ \mathcal{W}_{n\geq 2}(s) = 1 - \exp(-s/\lambda) - \exp(-s/\lambda)(s/\lambda)$$

• the GS series becomes [note that it is a p.d.f. of θ i.e. $\int_{\Omega} F(s; \theta) d\Omega = 1$]

$$F(s;\theta)_{GS} = \sum_{n=0}^{\infty} f_n(\theta) \mathcal{W}_n(s) = f_{n=0}(\theta) \mathcal{W}_{n=0} + f_{n=1}(\theta) \mathcal{W}_{n=1} + \sum_{n=2}^{\infty} f_n(\theta) \mathcal{W}_n(s) = e^{-s/\lambda} \frac{\delta(1 - \cos(\theta))}{2\pi}$$

$$+ (s/\lambda) \mathrm{e}^{-s/\lambda} f_{n=1}(\theta) + \sum_{\ell=0}^{\infty} \frac{2\ell+1}{4\pi} P_{\ell}(\cos(\theta)) \left\{ \mathrm{e}^{-(s/\lambda)G_{\ell}} - \mathrm{e}^{-(s/\lambda)} \left[1 + (s/\lambda)(1-G_{\ell})\right] \right\}$$

• make the transformation $\theta \to \mu \equiv \cos(\theta)$ [which is the p.d.f. of μ i.e. $\int_{-1}^{+1} F(s; \mu) d\mu = 1$]

$$\begin{split} F(s;\mu)_{GS} =& 2\pi F(s;\theta \to \mu)_{GS} = \mathrm{e}^{-s/\lambda} \delta(1-\mu) + (s/\lambda) \mathrm{e}^{-s/\lambda} 2\pi f_{n=1}(\mu) + \\ & \sum_{\ell=0}^{\infty} (\ell+0.5) P_{\ell}(\mu) \left\{ \mathrm{e}^{-(s/\lambda)G_{\ell}} - \mathrm{e}^{-(s/\lambda)} \left[1 + (s/\lambda)(1-G_{\ell}) \right] \right\} \end{split}$$

[A.F.Bielajew, NIMB 111(1996)195-208; I.Kawrakow, A.F.Bielajew, NIMB 134(1998)325-336;]

э

<ロ> (日) (日) (日) (日) (日)

Motivation, about, not about	Theoretical background in a nutshell	Few words on sampling	Preliminary results	Conclusion and plans
Kawrakow-Bielajew theory				

• in order to get all 3 terms in the form of *probability* x *p.d.f.*

$$F(s;\mu)_{GS} = \mathrm{e}^{-s/\lambda} \delta(1-\mu) + (s/\lambda) \mathrm{e}^{-s/\lambda} 2\pi f_{n=1}(\mu) + (1 - \mathrm{e}^{-s/\lambda} - (s/\lambda) \mathrm{e}^{-s/\lambda}) F(s;\mu)_{GS}^{2+1}$$

where

$$F(s;\mu)^{2+}_{GS}\equiv\sum_{\ell=0}^{\infty}(\ell+0.5)P_\ell(\mu)rac{\mathrm{e}^{-(s/\lambda)G_\ell}-\mathrm{e}^{-(s/\lambda)}\left[1+(s/\lambda)(1-G_\ell)
ight]}{1-\mathrm{e}^{-s/\lambda}-(s/\lambda)\mathrm{e}^{-s/\lambda}}$$

- no-scattering case: trivial
- single scattering case: using the Wentzel model, the PDF for single scattering $p(A;\mu) = 2\pi f_{n=1}(\mu) = \frac{2A(1+A)}{(1-\mu+2A)^2}$ the corresponding CDF $\mathcal{P}(A;\mu) = \frac{(A+1)(1-\mu)}{1-\mu+2A}$ and the sampling $\mu = \mathcal{P}^{-1}(A;\xi) = 1 \frac{2A\xi}{1-\xi+A}$ where $\xi \in \mathcal{U}(0,1)$
- multiple scattering case: need to sample from $F(s;\mu)^{2+}_{GS}
 ightarrow$ pre-compute

イロト イポト イヨト イヨト

Few words on sampling

Preliminary results

Kawrakow-Bielajew theory

Variable transformation is needed to obtain smooth distributions \rightarrow reduce memory footprint and improve sampling

- suppose that we apply the transformation $u = f(a_1, ..., a_n; \mu)$ [where $u \in [0, 1]$ the transformed variable f is the transformation function with $a_1, ..., a_n$ parameters that control the shape of the result of the transform]
- let $q^{2+}(u)$ PDF of u be the transformed $F(s; \mu)^{2+}_{GS}$ PDF of μ that needs to satisfy the requirement $q^{2+}(s; u)du = F(s; \mu)^{2+}_{GS}d\mu$ [i.e.the probability of having u falling into the du interval around u according to the transformed PDF $q^{2+}(u)$ is equal to the probability of having μ falling into the du interval around μ according to the original PDF $F(s; \mu)^{2+}_{GS}$]
- which means that $q^{2+}(s; u) = F(s; \mu)_{GS}^{2+} \frac{\mathrm{d}\mu}{\mathrm{d}u}$ where $\frac{\mathrm{d}\mu}{\mathrm{d}u} = \left(\frac{\mathrm{d}u}{\mathrm{d}\mu}\right)^{-1} = \left(\frac{\partial f(a_1, \dots, a_n; \mu)}{\partial \mu}\right)^{-1}$
- the parameters a_i i = 1, ..., n of the transformation can be determined through the optimization

$$0 = \frac{\partial}{\partial a_i} \left[\int_0^1 \left[q^{2+}(s;u) - 1 \right]^2 \mathrm{d}u \right] = \int_{-1}^{+1} \left[F(s;\mu)_{GS}^{2+} \left(\frac{\partial f(a_1,...,a_n;\mu)}{\partial \mu} \right)^{-1} \right]^2 \left[\frac{\partial^2 f(a_1,...,a_n;\mu)}{\partial \mu \partial a_i} \right] \mathrm{d}\mu$$

[we want the transformed $q^{2+}(s; u)$ PDF to be as close as possible to the uniform distribution (in least-square sense)]

• in the case of using the Wentzel model one can take $u = f(a; \mu) = \frac{(a+1)(1-\mu)}{1-\mu+2a}$; the corresponding inverse transform $\mu = 1 - \frac{2au}{1-u+a}$ [note that $f(a; \mu)$ corresponds to the single scattering Wentzel CDF with a scaled $a = w^2A$ screening parameter, where the scaling factor w is arbitrary at the moment; the motivation behind this: if $\mathcal{P}(\mu)$ would be the exact CDF that corresponds to the original PDF $F(s; \mu)_{si}^{2n}$ and one would use $f(\mu) \equiv \mathcal{P}(\mu)$, the transformed distribution would be the uniform distribution (in order to see this, just plug $f(\mu) \equiv \mathcal{P}(\mu)$ into the third item on this page).]

[I.Kawrakow, A.F.Bielajew, NIMB 134(1998)325-336]

Few words on sampling

Preliminary results

Kawrakow-Bielajew theory

• the optimal parameter of the transformation can be determined by plugging the chosen transformation function $u = f(a; \mu) = \frac{(a+1)(1-\mu)}{1-\mu+2a}$ into the results of the optimization i.e.

$$0 = \int_{-1}^{+1} \left[F(s;\mu)_{GS}^{2+} \left(-\frac{[1-\mu+2a]^2}{2a(1+a)} \right) \right]^2 \left[-2\frac{1-\mu(1+2a)}{[1-\mu+2a]^3} \right] d\mu \text{ that leads to the optimal solution}$$
$$a = \frac{\alpha}{4\beta} + \sqrt{\left(\frac{\alpha}{4\beta}\right)^2 + \frac{\alpha}{4\beta}}$$

where

$$\begin{split} &\alpha = \\ &\sum_{\ell=0}^{\infty} \gamma_{\ell}(s,\lambda,A) \left\{ \left(1.5\ell + \frac{0.065}{\ell+1.5} + \frac{0.065}{\ell-0.5} + 0.75 \right) \gamma_{\ell}(s,\lambda,A) - 2(\ell+1)\gamma_{\ell+1}(s,\lambda,A) + \frac{(\ell+1)(\ell+2)}{(2\ell+3)}\gamma_{\ell+2}(s,\lambda,A) \right\} \\ &\beta = \sum_{\ell=0}^{\infty} (\ell+1)\gamma_{\ell}(s,\lambda,A)\gamma_{\ell+1}(s,\lambda,A) \text{ and } \gamma_{i}(s,\lambda,A) = \frac{e^{-(s/\lambda)G_{i}(\lambda)} - e^{-(s/\lambda)}[1+(s/\lambda)(1-G_{i}(A))]}{1 - e^{-s/\lambda} - (s/\lambda)e^{-s/\lambda}} \end{split}$$

it would be too expensive to compute these optimal values of a at runtime (at the back transform) so one can use a polynomial fit to the optimal w² ≈ w² then a ≈ ã = w²A can be obtained (both at pre-computation and at run time for the back transform). Kawrakow obtained

$$\frac{\ddot{w}^2}{0.5(s/\lambda)+2} = \begin{cases} 1.347 + t(0.209364 - t(0.45525 - t(0.50142 - t0.081234))) & \text{if } s/\lambda < 10 \\ -2.77164 + t(2.94874 - t(0.1535754 - t0.00552888)) & \text{otherwise} \end{cases}$$
where $t = \ln(s/\lambda)$.

• the transformed distribution $q^{2+}(s, \lambda, a, A; u) = \frac{2a(1-a)}{[1-u+a]^2} \sum_{\ell}^{\infty} (\ell + 0.5) P_{\ell} \left[1 - \frac{2au}{1-u+a}\right] \gamma_{\ell}(s, \lambda, A)$

[I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336, I Kawrakow et al., NRCC Report PIRS-701] 🛛 🔬 🖉 🕨 🗸 🚊 🕨 🤇 🛓 🖉

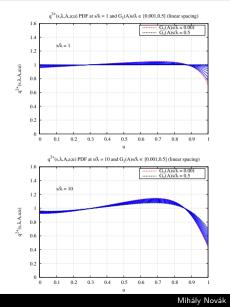
э.

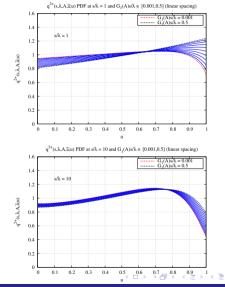
Few words on sampling

Preliminary re

Conclusion and plans

Kawrakow-Bielajew theory





Geant4 EM meeting 09-03-2015

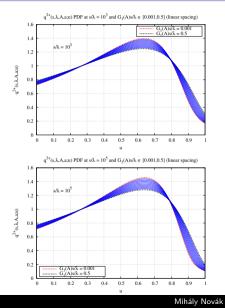
æ

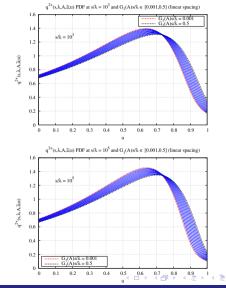
Few words on sampling

Preliminary res

Conclusion and plans

Kawrakow-Bielajew theory





Geant4 EM meeting 09-03-2015

æ

Few words on sampling

Preliminary results

Conclusion and plans

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

・ロッ ・回 ・ ・ ヨッ ・ ヨ

We have the $q^{2+}(s/\lambda, G_1s/\lambda; u)$ PDFs pre-computed over a pre-defined 2D grid of $\{(s/\lambda)_i\}$ and $\{(G_1s/\lambda)_j\}$ sets of parameter values carefully chosen such that linear interpolation in $\log(s/\lambda)$ and G_1s/λ will yield accurate results. If the actual parameter values are $(s/\lambda)_i \leq s/\lambda < (s/\lambda)_{i+1}$, $(G_1s/\lambda)_j \leq G_1s/\lambda < (G_1s/\lambda)_{j+1}$ and suppose that the final sampling from the PDF gives u i.e. $\mathcal{P}^{-1}(\xi) = u \ \xi \in \mathcal{U}(0,1) \ u_k \leq u < u_{k+1}$

- interpolation in the parameters
- identification of grid points $u_k \leq u < u_{k+1}$ such that $\mathcal{P}(u_k) \leq \xi < \mathcal{P}(u_{k+1})$
- interpolation of the inverse CDF to obtain $\mathcal{P}^{-1}(\xi) = u$ i.e. interpolation in the $\mathcal{P}^{-1}(\xi_k) = u_k \leq \mathcal{P}^{-1}(\xi) = u < \mathcal{P}^{-1}(\xi_{k+1}) = u_{k+1}$ interval where $x_{i_\ell} = \mathcal{P}(u_\ell)$

イロト イポト イヨト イヨト

Few words on sampling

Preliminary results

Conclusion and plans

Sampling from parametrized PDF

Contents

Motivation, about, not about

Theoretical background in a nutshell

- Goudsmit-Saunderson(GS) theory
- Combination of GS-theory with screened Rutherford DCS
- Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

・ロッ ・回 ・ ・ ヨッ ・ ヨ

Few words on sampling

Preliminary results

Conclusion and plans

Sampling from parametrized PDF

Interpolation in the parameters: suppose that (*i*) we have p(A; x) PDF of the stochastic variable x pre-computed over an A grid with $\{a_i\}$ pre-defined values of the parameter; (*ii*) the $\{a_i\}$ grid is dense enough for linear interpolation in A

- for a given $a_i \le a < a_{i+1}$ value of the parameter, first we should interpolate the the PDF between the $a_i \le a < a_{i+1}$ parameter grid points to get p(a; x), then we should sample from the interpolated PDF p(a; x)
- however, since the {a_i} grid is dense enough for linear interpolation of the PDF in A, we can use interpolation by weights(or statistical interpolation) in the form

$$p(a; x) = rac{a_{i+1}-a}{a_{i+1}-a_i}p(a_i; x) + rac{a-a_i}{a_{i+1}-a_i}p(a_{i+1}; x)$$

- which results in a form of composition(i.e. in general $p(x) = \sum_{k} P_k(p_k(x))p_k(x)$) since the probability of taking the PDF $p(a_i; x)$ is $P(p(a_i; x)) = \frac{a_{i+1}-a_i}{a_{i+1}-a_i}$ and the $1 P(p(a_i; x))$ is the probability of taking the PDF $p(a_{i+1}; x)$
 - first we make the selection between the $p(a_i; x)$ and $p(a_{i+1}; x)$ PDFs
 - we take $p(a_i;x)$ if $\xi < \frac{a_{i+1}-a}{a_{i+1}-a_i}, \ \xi \in \mathcal{U}(0,1)$ and $p(a_{i+1};x)$ otherwise
 - then we need to sample from the selected, already pre-calculated and stored PDFs
- note, that we can use this method since the $q^{2+}(s/\lambda, G_1s/\lambda; u)$ PDFs are smooths and the pre-defined parameter grids are dense enough that linear interpolation in $\log(s/\lambda)$ and G_1s/λ will yield accurate results
- the proper pre-computed q^{2+} PDF can be selected by using two uniform random sample

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Few words on sampling

Preliminary results

Conclusion and plans

Sampling of bins in case of pre-computed PDF

Contents

Motivation, about, not about

Theoretical background in a nutshell

- Goudsmit-Saunderson(GS) theory
- Combination of GS-theory with screened Rutherford DCS
- Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

・ロッ ・回 ・ ・ ヨッ ・ ヨ

Few words on sampling

Preliminary results

Sampling of bins in case of pre-computed PDF

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the corresponding $\mathcal{P}(x)$ CDF we need to solve the inverse equation $\mathcal{P}^{-1}(\xi) = x$ where $\xi \in \mathcal{U}(0, 1)$.

- the first step is to find k such that $\mathcal{P}(x_k) = \xi_k \leq \xi < \mathcal{P}(x_{k+1}) = \xi_{k+1}$
- this step can be done quickly if the inverse CDF $\mathcal{P}^{-1}(\xi)$ is known at equally probably intervals
- it means that $\text{Dom}[\mathcal{P}^{-1}] = [0, 1]$ is divided up to equal bins $\{\xi_k\}_{k=0}^N, \xi_{k+1} \xi_k = \text{const.} = 1/N \ \forall k \in 0, ..., N-1$ and the corresponding $\mathcal{P}^{-1}(\xi_k) = x_k$ values are known
- however, usually it is the domain of the PDF that we divide up $\{x_j\}_{j=0}^M$, $x_0 = x_{min}$, $x_M = x_{max}$ and we compute the PDF $p(x_j)$ at the grid points
- in this case we have two possibilities to achieve equally probably intervals:
 - adjust the size of the individual bins of the $\{x_j\}_{j=0}^M$ grid such that $\int_{x_j}^{x_{j+1}} p(x) dx = \text{const } \forall j = 0, ..., M - 1.$ The easiest way to achieve this is: (i) define the grid $\{\xi_k\}_{k=0}^N$, $\xi_{k+1} - \xi_k = \text{const.} = 1/N \ \forall k \in 0, ..., N - 1$; (ii) then determine the $\mathcal{P}^{-1}(\xi_k)$ inverse CDF values by interpolation using the know $\mathcal{P}^{-1}(\xi_j = x_j)$ values. HOWEVER, special care needs to be taken when one interpolates the (inverse) CDF!!! (see later)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへで

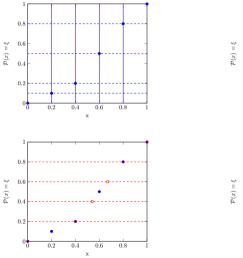
[[]A.J.Walker, Electronics Letters 10(8)(1974)127-128]

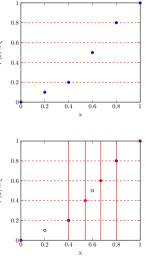
Few words on sampling

Preliminary re

Conclusion and plans

Sampling of bins in case of pre-computed PDF





◆□ > ◆□ > ◆ 三 > ◆ 三 > → □ = → ○ < ⊙

Mihály Novák Ge

Few words on sampling

Preliminary results

Sampling of bins in case of pre-computed PDF

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the corresponding $\mathcal{P}(x)$ CDF we need to solve the inverse equation $\mathcal{P}^{-1}(\xi) = x$ where $\xi \in \mathcal{U}(0, 1)$.

- the first step is to find k such that $\mathcal{P}(x_k) = \xi_k \leq \xi < \mathcal{P}(x_{k+1}) = \xi_{k+1}$
- this step can be done quickly if the inverse CDF $\mathcal{P}^{-1}(\xi)$ is known at equally probably intervals
- it means that $\text{Dom}[\mathcal{P}^{-1}] = [0, 1]$ is divided up to equal bins $\{\xi_k\}_{k=0}^N, \xi_{k+1} \xi_k = \text{const.} = 1/N \ \forall k \in 0, ..., N-1$ and the corresponding $\mathcal{P}^{-1}(\xi_k) = x_k$ values are known
- however, usually it is the domain of the PDF that we divide up {x_j}^M_{j=0}, x₀ = x_{min}x_M = x_{max} and we compute the PDF p(x_j) at the grid points
- in this case we have two possibilities to achieve equally probably intervals:
 - adjust the size of the individual bins of the $\{x_j\}_{j=0}^M$ grid such that

 $\int_{x_j}^{x_{j+1}} p(x) dx = \text{const } \forall j = 0, ..., M - 1. \text{ The easiest way to achieve this is: (i) define the grid} \\ \{\xi_k\}_{k=0}^N, \ \xi_{k+1} - \xi_k = \text{const.} = 1/N \ \forall k \in 0, ..., N - 1; (ii) \text{ then determine the } \mathcal{P}^{-1}(\xi_k) \text{ inverse} \\ \text{CDF values by interpolation using the know } \mathcal{P}^{-1}(\xi_j = x_j) \text{ values. HOWEVER, special care needs to be taken when one interpolates the inverse CDF!!! (see later)}$

keep the equal size of the individual bins of the {x_j}^M_{j=0} grid and reshuffle the p(x_j) PDF values such that ∫^{x_{j+1}}_{x_j} p(x)dx = const = mean ∀j = 0, ..., M - 1 by mixing "probabilities" from different bins i.e. barrow/lend probabilities and record it in a table (Walker's alias sampling)

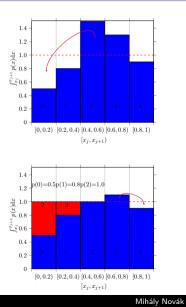
[A.J.Walker, Electronics Letters 10(8)(1974)127-128]

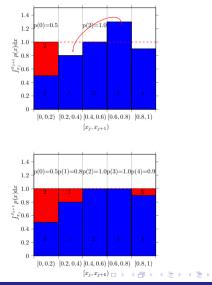
Few words on sampling

Preliminary res

Conclusion and plans

Sampling of bins in case of pre-computed PDF





Geant4 EM meeting 09-03-2015

æ

Sampling of bins in case of pre-computed PDF

- results in equally probably CDF bins
- if we store:
 - the probability of the lower bars $p(j) \rightarrow [0.5, 0.8, 1.0, 1.0, 0.9]$
 - $\bullet\,$ and the original bin locations of the moved pieces \rightarrow [2,3,-,-,3]
 - in theory the sampling can be done with 2 independent random numbers ξ_1,ξ_2
 - the first will give one of the equally probably bins j
 - then if $\xi_2 < p(j)$ we will take the bin $j \to x_j$ and the corresponding alias bin otherwise
 - however the same sampling can be straightforwardly done even with only one random number
- drawbacks compared to the "simply" equally probably CDF:
 - the monotonic property of the CDF is "lost" i.e. ξ_a < ξ_b → x_a < x_b since probabilities are mixed from different bins (cannot used for sampling in a restricted interval)
 - additional random number is needed to perform the interpolation (within the sampled bin)

・ロト ・四ト ・ヨト ・ヨト

Few words on sampling

Preliminary results

Conclusion and plans

Interpolation of the inverse CDF

Contents

Motivation, about, not about

Theoretical background in a nutshell

- Goudsmit-Saunderson(GS) theory
- Combination of GS-theory with screened Rutherford DCS
- Kawrakow-Bielajew theory

Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

・ロッ ・回 ・ ・ ヨッ ・ ヨ

Few words on sampling

Preliminary results

Interpolation of the inverse CDF

interpolation of the inverse CDF: after the determination of bin *j* such that $\mathcal{P}(\xi_j) \leq \xi < \mathcal{P}(\xi_{j+1})$ one needs to solve $\mathcal{P}^{-1}(\xi) = x$ i.e. interpolation within $\mathcal{P}^{-1}(\xi_j) = x_j \leq \mathcal{P}^{-1}(\xi) = x < \mathcal{P}^{-1}(\xi_{j+1}) = x_{j+1}$

- using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF between x_j and x_{j+1} (P⁻¹(ξ_j) = x_j, P⁻¹(ξ_{j+1}) = x_{j+1}) with a constant
- the applied interpolation should satisfy $\frac{\mathrm{d}\mathcal{P}^{-1}(\xi)}{\mathrm{d}\xi} = \left(\frac{\mathrm{d}\mathcal{P}(x)}{\mathrm{d}x}\right)^{-1} = \frac{1}{p(x)}$ and $\mathcal{P}^{-1}(\xi_j) = x_j$, $\mathcal{P}^{-1}(\xi_{j+1}) = x_{j+1}$
- one can approximate the CDF within the bin by using second order Taylor approximation:

•
$$\mathcal{P}(x) \approx \tilde{\mathcal{P}}(x) = \mathcal{P}(x_j) + \mathcal{P}'(x_j)[x - x_j] + 0.5\mathcal{P}''(x_j)[x - x_j]^2 =$$

 $\mathcal{P}(x_j) + p(x_j)[x - x_j] + 0.5p'(x_j)[x - x_j]^2 \approx \mathcal{P}(x_j) + p(x_j)[x - x_j] + 0.5\frac{p(x_{j+1}) - p(x_j)}{x_{j+1} - x_j}[x - x_j]^2$

• that results in
$$x = \mathcal{P}^{-1}(\xi) \approx \tilde{\mathcal{P}}^{-1}(\xi) = x_j - \left\lfloor p(x_j) - \sqrt{p^2(x_j) + 2c[\xi - \xi_j]} \right\rfloor /c; \ c = \frac{p(x_{j+1}) - p(x_j)}{x_{j+1} - x_j}$$

•
$$\frac{d\tilde{\mathcal{P}}^{-1}(\xi)}{d\xi} = \frac{1}{\sqrt{2c(\xi-\xi_j)+p^2(x_j)}}$$

• $\frac{d\tilde{\mathcal{P}}^{-1}(\xi)}{d\xi}|_{\xi=\xi_j} = \frac{1}{p(x_j)} \text{ and } \tilde{\mathcal{P}}^{-1}(\xi_j) = x_j$
• $\frac{d\tilde{\mathcal{P}}^{-1}(\xi)}{d\xi}|_{\xi=\xi_{j+1}} = \frac{1}{p(x_{j+1})} \text{ and } \tilde{\mathcal{P}}^{-1}(\xi_{j+1}) = x_{j+1} \text{ only if } p(x) \text{ is linear between } x_j, x_{j+1}$

• then the sampled value $x \approx \tilde{x} = \tilde{\mathcal{P}}^{-1}(\xi) = x_j - \left\lfloor p(x_j) - \sqrt{p^2(x_j) + 2c[\xi - \xi_j]} \right\rfloor / c$, where

Few words on sampling

Preliminary results

Interpolation of the inverse CDF

interpolation of the inverse CDF: after the determination of bin *j* such that $\mathcal{P}(\xi_i) \leq \xi < \mathcal{P}(\xi_{i+1})$ one needs to solve $\mathcal{P}^{-1}(\xi) = x$ i.e. interpolation within $\mathcal{P}^{-1}(\xi_i) = x_i < \mathcal{P}^{-1}(\xi) = x < \mathcal{P}^{-1}(\xi_{i+1}) = x_{i+1}$

- using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF between x_i and x_{i+1} $(\mathcal{P}^{-1}(\xi_i) = x_i, \mathcal{P}^{-1}(\xi_{i+1}) = x_{i+1})$ with a constant
- the applied interpolation should satisfy $\frac{d\mathcal{P}^{-1}(\xi)}{d\xi} = \left(\frac{d\mathcal{P}(x)}{dx}\right)^{-1} = \frac{1}{\pi(x)}$ and $\mathcal{P}^{-1}(\xi_i) = x_i$. $\mathcal{P}^{-1}(\xi_{i+1}) = x_{i+1}$
- a better solution is to use rational function approximation in the form of
 - $x = \mathcal{P}^{-1}(\xi) \approx \tilde{\mathcal{P}}^{-1}(\xi) = x_j + \frac{(1+a_j+b_j)\alpha}{1+a_j\alpha+b_j\alpha^2} [x_{j+1} x_j]$, where $\alpha = \frac{\xi \xi_j}{\xi_{j+1} \xi_j}$
 - $\tilde{\mathcal{P}}^{-1}(\xi_i) = x_i$ and $\tilde{\mathcal{P}}^{-1}(\xi_{i+1}) = x_{i+1}$ independently form the values a_i, b_i
 - $\frac{\mathrm{d}\tilde{\mathcal{P}}^{-1}(\xi)}{\mathrm{d}\xi} = \frac{(1+a_j+b_j)(1-b_j\alpha^2)}{[1+a_i\alpha+b_i\alpha^2]^2} \frac{x_{j+1}-x_j}{\xi_{i+1}-\xi_i} \text{ and the parameters } a_j, b_j \text{ can be determined from the}$

requirements

$$\frac{\mathrm{d}\check{\mathcal{P}}^{-1}(\xi)}{\mathrm{d}\xi}_{|\xi=\xi_{j}} = \frac{1}{p(x_{j})}$$
$$\frac{\mathrm{d}\check{\mathcal{P}}^{-1}(\xi)}{\mathrm{d}\xi}_{|\xi=\xi_{j+1}} = \frac{1}{p(x_{j+1})}$$

• that yields $b_j = 1 - \left\lceil \frac{\xi_{j+1} - \xi_j}{x_{j+1} - x_j} \right\rceil^2 \frac{1}{p(x_j)p(x_{j+1})}$ and $a_j = \frac{\xi_{j+1} - \xi_j}{x_{j+1} - x_j} \frac{1}{p(x_j)} - 1 - b_j$

• then the sampled value $x \approx \tilde{x} = \tilde{\mathcal{P}}^{-1}(\xi) = x_j + \frac{(1+a_j+b_j)\alpha}{1+a_i\alpha+b_i\alpha^2}[x_{j+1}-x_j]$, with $\alpha = \frac{\xi-\xi_j}{\xi_{j+1}-\xi_j}$

Interpolation of the inverse CDF

The new version of Kawrakow-Bielajew Goudsmit-Saunderson model:

- $q^{2+}(s/\lambda, G_1s/\lambda; u)$ PDFs are pre-computed over a 2D s/λ , G_1s/λ grid using an $\ell_{max} = 10^4$ limit in the GS series
- the previously discussed variable transformation is used to achieve smooth PDFs
- statistical interpolation in $\log(s/\lambda)$ and G_1s/λ is used that gives accurate results (no loop, no search, no conditions, 2 random numbers)
- pre-computed data are stored over the 2D parameter grid in form of inverse CDFs with equally probably bins achieved by using rational interpolation :
 - bin identification i.e. find k such that ξk ≤ ξ < ξk+1 can be done in one step(no loop, no search, no conditions)
 - then rational interpolation is used to solve P⁻¹(ξ) = x, ξ_k ≤ ξ < ξ_{k+1}(proper derivatives, no loop, no search, no conditions)
 - only 1 random number is needed to preform the sampling
- results in:
 - accurate, robust sampling
 - significant speed-up: TestEm5 with the new version is about 10% faster than the current version (reached or even faster than opt0)

Few words on sampling

Preliminary results

Conclusion and plans

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

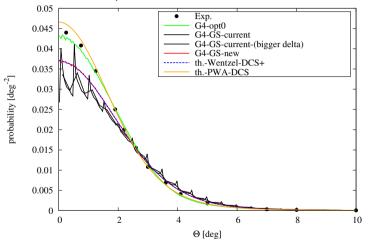
Preliminary results

Conclusion and plans

イロト イポト イヨト イヨト

Few words on sampling

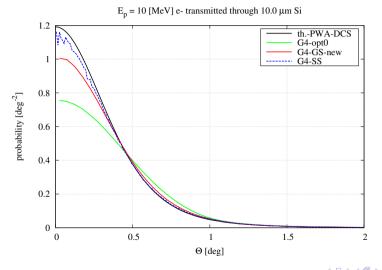
Preliminary results



exp.: [A.O.Hanson et al., Phys.Rev.84(1951)634]

Few words on sampling

Preliminary results

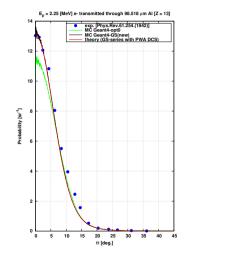


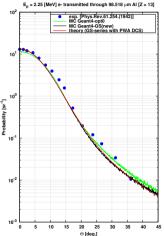
・ロト ・四ト ・国ト ・国ト 三国

Few words on sampling

Preliminary results

Conclusion and plans





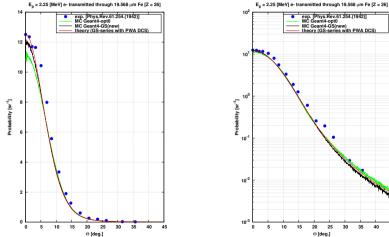
exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

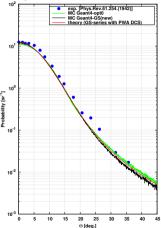
э.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Few words on sampling

Preliminary results



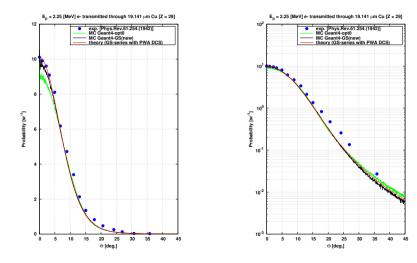


exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

а.

Few words on sampling

Preliminary results



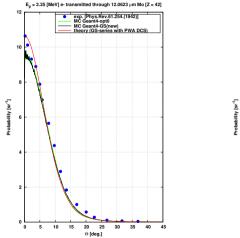
exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

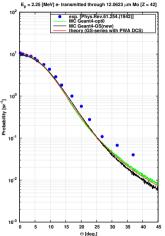
э.

Few words on sampling

Preliminary results

Conclusion and plans



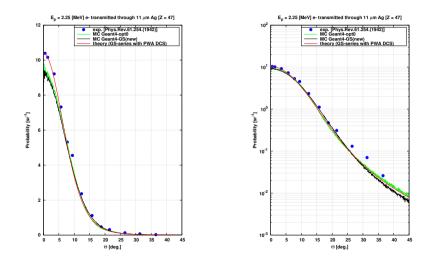


exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

э.

Few words on sampling

Preliminary results



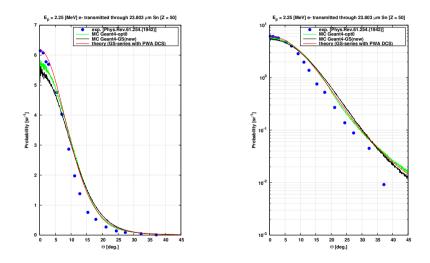
exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

э.

Few words on sampling

Preliminary results

Conclusion and plans



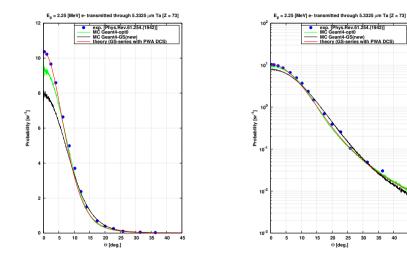
exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

э.

Few words on sampling

Preliminary results

35 40 45



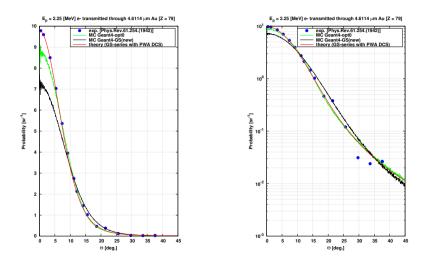
exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

э.

Few words on sampling

Preliminary results

Conclusion and plans



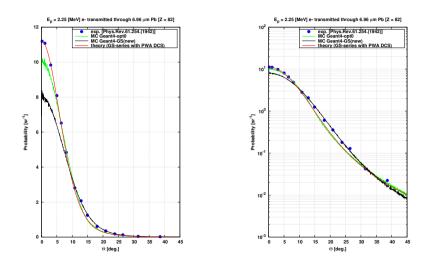
Mihály Novák

exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

э.

Few words on sampling

Preliminary results

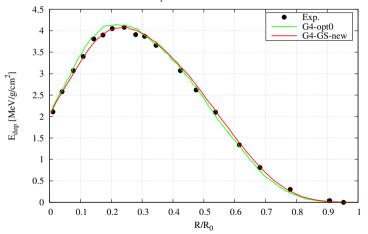


exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at $\theta = 0$

ъ.

Few words on sampling

Preliminary results



Few words on sampling

Preliminary results

Conclusion and plans

Contents

Motivation, about, not about

- 2 Theoretical background in a nutshell
 - Goudsmit-Saunderson(GS) theory
 - Combination of GS-theory with screened Rutherford DCS
 - Kawrakow-Bielajew theory

3 Few words on sampling

- Sampling from parametrized PDF
- Sampling of bins in case of pre-computed PDF
- Interpolation of the inverse CDF

Preliminary results

Conclusion and plans

・ロト・日本・山田・山田・山口・日・

- the model in the form of the new implementation can be used as a relatively fast option with the advantages (compared to opt0):
 - the model is free from tuning parameters
 - with limitations that can be well understood (ightarrow no more surprise)
- the source of limitations is the simple form of the DCS for elastic scattering
- note, that it is this simple analytical form that makes possible to obtain a material independent, pre-computed table of angular distributions
- any correction would lead material dependency
- instead of introducing corrections based on more accurate numerical PWA-DCS for elastic scattering one should investigate the possibly of using a separate model that based on these PWA-DCS

э.

メロト メヨト メヨト

Motivation, about, not about

Theoretical background in a nutshell

Few words on sampling

Preliminary resu

Conclusion and plans

Thank you for your attention!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶