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Motivation, about, not about

Motivation:

@ looking for candidate model for multiple elastic scattering of low energy (< 100[MeV])
electrons/positrons that can be used for optimization/vectorization within the Geant-V project 1

@ Kawrakow-Bielajew model is investigated as the first candidate
@ one version of this model is currently available in Geant4
@ a different version is under implementation in Geant4 only for testing purposes
What's this presentation about?
@ the new version of the model
@ the model involves sampling from pre-computed distributions stored in table over a 2D parameter grid
@ some advanced sampling techniques are used in the new version that are not frequently used in Geant4
however accurate, fast sampling can be achieved by using them
@ these techniques will be discussed as well
What it's not about?
@ this is not a code review !!!
@ the currently available Geant4 version of the model won't be discussed or jugged
@ the presentation will mainly focus on modelling of angular sampling and other parts like energy loss
correction, computation of Lewis's moments are not discussed | but taken into account in the new version in a self consistent way]
Additional remark: detailed discussion of the theory itself would take more than 20 minutes so we will
run through that very quickly and will focus on more practical iSSUES. [However, information on the "theory slides for more detailed

tucly-is-avaiiabic]

http://geant.cern.ch/content/about-geant5
Mihaly Novak
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Theoretical background in a nutshell

Geant4 Goudsmit-Saunderson model is the

@ Kawrakow-Bielajew model for elastic scattering

[1.Kawrakow, A.F.Bielajew, NIMB 134(1998)325-336]

@ based on Goudsmit-Saunderson theory of multiple elastic scattering

[S.Goudsmit,J.L. Saunderson, PR 57(1940)24-29]

@ hybrid model for (no, single) and multiple elastic scattering of e~ /e™

[A.F Bielajew, NIMB 111(1996)195-208]

@ the screened Rutherford DCS is used for elastic scattering

Mihaly Novak
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Goudsmit-Saunderson(GS) theory

Theoretical background in a nutshell
ce

Goudsmit-Saunderson angular distribution after travelling a path s:

Flsi0)cs = 3 25 cup(—s/30)Pulcos(o)

£=0

° ——elastlc DCS; o0 = f dg 4Q-elastic cross section; A1 = No-elastic mean free path

f1(9) = %‘dl—;’z is single elastlc scattering distribution (note that 2mf(0) = 27— 1 d“ = p(cos(0)))

f1(9) is expressed in terms of orthogonal polynomials (Legendre series)
= ZZOO ZELF, Py (cos(0))

F[ = 27rf f1(0)Py(cos(0))d(cos(8)) = (P¢(cos(0)))

Gy are the é-th transport coefficients Gy =1 — F; = 1 — (Py(cos(6)))

>\— = G _ 1=Fp _ 1=(Py(cos(9)))
pY by X
then F(s;0) = Z;’ZO fa()Wh(s)
f2(0) the angular distribution after n elastic interactions f,(6 Ze o 2f;::l(Fg "Py(cos(0))

Wh(s) = exp(fs/)\)w is the probability of having exactly n elastic interaction along a path s
(i.e. Poisson)

[S.Goudsmit,J.L.Saunderson, PR 57(1940)24-29; J.M.Fernandez-Varea,R.Mayol,J.Baré,F.Salvat NIMB 73(1993)447-473]
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Theoretical background in a nutshell
o] 1o}

Combination of GS-theory with screened Rutherford DCS

Using a simple exponentially screened Coulomb potential as the scattering potential in the
computation of the scattering amplitudes under the first Born approximation(Wentzel model):

° dQ = |f|> where f = (0, $) is the scattering amplitude

@ which fg1(6, ¢) = 47rh fe ke =k )7' V(¥)d3r in the first Born approximation fwhere: &, & and V(¥') are the wave vectors

of the incident plane, the outgoing(scattered) spherical spherical wave and the scattering potential respectively. Note that: (i) in case of elastic scattering k; = k¢ = k; (ii)

hg = h(k; — k;) is the momentum transfer and q> = |k — k;|> = 2k*(1 — cos(0)) = 2k?(2sin>(0 /2)) where & = Z(k;, k) is the scattering angle]

@ assuming V(7) = V/(r) i.e. spherically symmetric scattering potential, substituting g = ke — ki and
choosing the coordinate system for the integration such that g = ¢z
fe1(0) = th fo sin(gr’)r' V(r')dr’

@ then using a simple exponentially screened Coulomb potential as the scattering potential i.e.

1.2
V(r)= ZZ% e~ /R [Z target atomic number, Z'e projectile charge, R screening radius ] W€ Can get

fp1(0) = =33 2Z'€?

1
|:2k2[17cos(9)+R*2/(2k2)] :|

b ooives daW) _ (zz'e? 1
@ which gives $Z* ' = ( <5 ) Ao (0) T2/ RO

2
@ one can introduce A = % (%) R—2 screening parameter [note that 1/(2k°R?) = 24] that gives the DCS for elastic
de W) _ [ zz'e? 1 .
scattering 3& =\ e T=cos(0)12A)2 and the corresponding

Mihaly Novak Geant4 EM meeting




Theoretical background in a nutshell
ocoe

Combination of GS-theory with screened Rutherford DCS

So DCS for elastic scattering within the Wentzel model is

do W (77’ 1
dQ \ pcs (1 — cos(0) 4 2A)?

2
27’ s
° oM = ( pcf3 ) A(1+A)

(W)rgy — 1 A(1+A)
° fl (0) T 7 (1—cos(0)+2A)?

"] GEW)(A) =1-—F=1—4[Qp_1(14+2A) — (1 +2A)Q¢(1 + 2A)] (Qc(x) are Legendre functions of the second kind]

o G")(A)=2A[In(A) (A+1)-1]

(W)

G A

@ note that %1 = [':)1\( gives the possibility set the screening parameter A such that the corresponding
DCS %(W) will give back A1 [therefore e.g. (cos(#)) = exp (—s/A1) will be correct]

Mihaly Novak Geant4 EM meeting 09-03-2015
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Theoretical background in a nutshell
0®00000

Kawrakow-Bielajew theory

First derive Bielajew’s hybrid form of the GS distribution i.e. separate the no, single and at least two
elastic scattering contributions:
o

Wi=0(s) = exp(—s/A); Wha=1(s) = exp(—s/A)(s/A); Wh>2(s) =1 —exp(—s/X\) — exp(—s/A)(s/])
@ the GS series becomes fnote that it is a p.a.f. of 0 icc f F(s: 0)dQ = 1]

F(si0)cs = 3 f(0)Wa(s) = fo-o(0)Wamo + oa ()Wt + Y Fr(O)Wn(s) = =

n=0 n=2

20+1

+ (s/N)e ™ M 1(9>+Z T2 Py(cos(0)) {em (/% — e~/ 14 (s/2)(1 - GO}

@ make the transformation 6 — p = cos(6) fwhich is the p.d.f. of i ie. f“ F(s; p)dp = 1]
-

F(s; 1)gs =2mF(5:0 — p)gs = e~/ 25(1 — p) + (s/X)e ™/ 2m oy (1) +

o]

D €+ 05)Py () {e NG — e~V 14 (s/A)(1 - 6]}

£=0

[A.F.Bielajew, NIMB 111(1996)195-208; |.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336;]
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Theoretical background in a nutshell
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Kawrakow-Bielajew theory

@ in order to get all 3 terms in the form of probability x p.d.f.
F(sim)as = e/ 6(1 — ) + (/N 2mfus (1) + (1 — e/ — (s/N)e™/A)F(s; )2}

where

oo
NG — e IV [1 4 (5/A)(1 — G
. 2+ —
Flsinos = D0+ 09Pi) —— = om— 5 e

@ no-scattering case: trivial
@ single scattering case: using the Wentzel model, the PDF for single scattering

p(A; p) = 2mfpz1(p) = #AZAA))? the corresponding CDF P(A; 1) = % and the sampling

pu=P 1A E)=1- m where £ € 1(0, 1)
@ multiple scattering case: need to sample from F(s; ,u)?_; — pre-compute

Mihaly Novak Geant4 EM meeting 3-2015




Theoretical background in a nutshell
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Kawrakow-Bielajew theory

Variable transformation is needed to obtain smooth distributions — reduce memory footprint and
improve sampling
@ suppose that we apply the transformation u = f(ai, ..., an; f4) [where u € [0, 1] the transformed variable  is the transformation function
with a;, ..., a, parameters that control the shape of the result of the transform]
@ let g>*(u) PDF of u be the transformed F(s; ,u)%;; PDF of p that needs to satisfy the requirement

. .2
q2+ (S, u)du = F(s, p,)ggd,u [i.e.the probability of having u falling into the du interval around u according to the transformed PDF q2* (u) is equal to the probability of

having 1o falling into the du interval around 41 according to the original PDF F(s; 12)%;]

-1 oy —1
@ which means that q2+(s; u) = F(s;y)ég% where i—’: = (S—Z) = (76’{(315“;3"'“))

@ the parameters a; i = 1,..., n of the transformation can be determined through the optimization

7] ! 2 i
2 . _ - )2
0= oar | J, [q T(s;u) — 1] du| = . F(s; ,u,)GJg (

2
of (a1, ..., an; -1 8%f (a1, ..., an;
(a1 #)) (a1 ©) du

op ouda;

[we want the transformed g** (s; u) PDF to be as close as possible to the uniform distribution (in least-square sense)]

@ in the case of using the Wentzel model one can take u = f(a; u) = %;

2au
Toura [note that f(a; ) corresponds to the single scattering Wentzel CDF with a scaled a = w?A screening parameter, where the scaling factor w
is arbitrary at the moment; the motivation behind this: if 7 (1) would be the exact CDF that corresponds to the original PDF F(s; u)zc‘; and one would use f(p) = P(u), the

the corresponding inverse

transform p =1 —

transformed distribution would be the uniform distribution(in order to see this, just plug f(x) = 7°(j) into the third item on this page).]

[I.Kawrakow,A.F Bielajew, NIMB 134(1998)325-336]
Mihaly Novak Geant4 EM meeti




Theoretical background in a nutshell
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Kawrakow-Bielajew theory

@ the optimal parameter of the transformation can be determined by plugging the chosen transformation
; _ ) = (@t)(—p)
function u = f(a; p) = T

+1 1-pr2a \1° 1—p(142 . .
0= fil [F(s; )%k (7%)} [f2ﬁ} dp that leads to the optimal solution

into the results of the optimization i.e.

2
a= g+ (&) +
where

Z/ ove(s, A A) { (150 + 2585 4 2885 4 0.75) 7e(s, A, A) — 20 + Lvera(s, A A) + Col5 P q000(s, 0, A) }
8= 02 o0+ el 0, Az, A, A) and (s, 1, A) = <= TG/ NA-GlA)

@ it would be too expensive to compute these optimal values of a at runtime (at the back transform) so one
can use a polynomial fit to the optimal w? ~ W? then a =~ 3 = W2A can be obtained (both at
pre-computation and at run time for the back transform). Kawrakow obtained

1.347 + t(0.209364 — t(0.45525 — t(0.50142 — t0.081234))) if s/A <10

2
o.s(sv;x)+2 =
—2.77164 + £(2.94874 — £(0.1535754 — t0.00552888)) otherwise
where t = In(s/X).

@ the transformed distribution g% (s, \, a, A; u) = [fa(LlH_:]Z Ez (£+0.5)P, [1 — 13113] Ye(s, A, A)

[I.Kawrakow,A.F .Bielajew, NIMB 134(1998)325-336, | Kawrakow et al., NRCC Report PIRS-701]

Mihaly Novak Geant4 EM meeting 09-03-2015
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Kawrakow-Bielajew theory

(s A.a) PDF at /A = 1 and G (A)/A € [0.001,0.5] (Tinear spacing) q**(s LA ) PDF at /A = 1 and Gy (A)s/A € [0.001,0.5] (linear spacing)
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Theoretical background in a nutshell
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Kawrakow-Bielajew theory

q**(s. 1A @) PDF at s/A = 10 and G (A)s/A € [0.001,0.5] (Tinear spacing) q**(sLAu) PDF at /A = 10° and Gy(A)s/A € [0.001,0.5] (linear spacing)
G (A)S/A = 0001
G, (A)s/h
g
<
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u
g
<
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Few words on sampling

We have the ¢°*(s/\, Gis/\; u) PDFs pre-computed over a pre-defined 2D grid of {(s/)\);} and
{(Gis/X);} sets of parameter values carefully chosen such that linear interpolation in log(s/X) and
Gis/X will yield accurate results. If the actual parameter values are (s/A); < s/A < (s5/A)iz1,
(Gis/X); < Gis/A < (Gis/A)j+1 and suppose that the final sampling from the PDF gives u i.e.

PHE) =uecU(0,1) uk < u < Uppa
@ interpolation in the parameters
@ identification of grid points ux < u < wky1 such that P(ux) < € < P(ugy1)

@ interpolation of the inverse CDF to obtain P~1(¢) = u i.e. interpolation in the
PL&k) = ux < P7YE) = u < P71 (€ky1) = ugyy interval where xip = P(up)

Mihaly Novak Geant4 EM meeting 09-03-2015
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Sampling from parametrized PDF

Few words on sampling
ce

Interpolation in the parameters: suppose that (i) we have p(A; x) PDF of the stochastic variable x
pre-computed over an A grid with {a;} pre-defined values of the parameter; (ii) the {a;} grid is dense
enough for linear interpolation in A

for a given a; < a < aj41 value of the parameter, first we should interpolate the the PDF between the
a; < a < ajy1 parameter grid points to get p(a; x), then we should sample from the interpolated PDF
p(a; x)

however, since the {a;} grid is dense enough for linear interpolation of the PDF in A, we can use
interpolation by weights(or statistical interpolation) in the form

p(a;ix) = 2222 p(a;; x) + 22 p(aj41; x)

41— ai Aj+1—4ai

which results in a form of composition(i.e. in general p(x) = Zk Pi(pr(x))pk(x)) since the probability of
taking the PDF p(a;; x) is P(p(ai; x)) = :’*1%3 and the 1 — P(p(aj; x)) is the probability of taking the
PDF p(ajy1; x)

o first we make the selection between the p(a;; x) and p(aj+1; x) PDFs

@ we take p(aj;x) if £ < a’*:__:, &£ €U(0,1) and p(aj+1; x) otherwise

@ then we need to sample from the selected, already pre-calculated and stored PDFs

note, that we can use this method since the g>*(s/\, G1s/\; u) PDFs are smooths and the pre-defined
parameter grids are dense enough that linear interpolation in log(s/)\) and Gis/\ will yield accurate results

the proper pre-computed g2t PDF can be selected by using two uniform random sample

Mihaly Novak Geant4 EM meetin, -2015
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Sampling of bins in case of pre-computed PDF

Few words on sampling
0®0000

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the
corresponding P(x) CDF we need to solve the inverse equation P~1(¢) = x where & € U(0, 1).

the first step is to find k such that P(xx) = & < € < P(xk+1) = Ek+1
this step can be done quickly if the inverse CDF P~1(&) is known at equally probably intervals

it means that Dom[P~!] = [0, 1] is divided up to equal bins

{fk}f(v:m &ky1 — &k = const. = 1/NVk €0,..., N — 1 and the corresponding P~1(&x) = xi values are
known

however, usually it is the domain of the PDF that we divide up {Xj}j’\io, X0 = Xmin, XM = Xmax and we
compute the PDF p(x;) at the grid points
in this case we have two possibilities to achieve equally probably intervals:
@ adjust the size of the individual bins of the {xj-}j"io grid such that
f:’“ p(x)dx = const Vj =0, ..., M — 1. The easiest way to achieve this is: (i) define the grid
J
{Sk}kNZO, €k11 — & = const. = 1/N Vk € 0,..., N — 1; (ii) then determine the P~1(&) inverse

CDF values by interpolation using the know P~1(§; = x;) values. HOWEVER, special care needs to
be taken when one interpolates the (inverse) CDF!!! (see later)

[A.J.Walker,Electronics Letters 10(8)(1974)127-128]
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Few words on sampling
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Sampling of bins in case of pre-computed PDF
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Sampling of bins in case of pre-computed PDF

Few words on sampling
000®00

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the
corresponding P(x) CDF we need to solve the inverse equation P~1(¢) = x where ¢ € U(0,1).

the first step is to find k such that P(xx) = & < & < P(Xk+1) = Ek+1
this step can be done quickly if the inverse CDF P~1(¢) is known at equally probably intervals

it means that Dom[P~!] = [0, 1] is divided up to equal bins

{fk}f(v:m €ky1 — &k = const. = 1/NVk €0,..., N — 1 and the corresponding P~1(£x) = xi values are
known

however, usually it is the domain of the PDF that we divide up {)g}j’\io, X0 = XminXpM = Xmax and we
compute the PDF p(x;) at the grid points

in this case we have two possibilities to achieve equally probably intervals:
@ adjust the size of the individual bins of the {Xj}j"’:’O grid such that
j:”l p(x)dx = const Vj =0, ..., M — 1. The easiest way to achieve this is: (i) define the grid
J
{5;(}2’:0, €k11 — & = const. = 1/N Vk € 0,..., N — 1; (ii) then determine the P~1(&) inverse
CDF values by interpolation using the know P~1(&; = x;) values. HOWEVER, special care needs to

be taken when one interpolates the inverse CDF!!! (see later)
@ keep the equal size of the individual bins of the {Xj}jl\io grid and reshuffle the p(x;) PDF values

such that f:“l p(x)dx = const = mean Vj = 0,..., M — 1 by mixing "probabilities” from different
J

bins i.e. barrow/lend probabilities and record it in a table (Walker's alias sampling)

[A.J.Walker,Electronics Letters 10(8)(1974)127-128]
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Few words on sampling
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Sampling of bins in case of pre-computed PDF

0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1) 0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)

[@j,@41) 25, @j41)

5(0)=0.5p(1)=0.8p(2)=1.0

0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1) 0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)

x

[, 2541) 1)
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Few words on sampling
00000e

Sampling of bins in case of pre-computed PDF

@ results in equally probably CDF bins
@ if we store:

the probability of the lower bars p(j) — [0.5,0.8,1.0,1.0,0.9]

and the original bin locations of the moved pieces — [2,3, —, —, 3]

in theory the sampling can be done with 2 independent random numbers &1, &>

the first will give one of the equally probably bins j

then if & < p(j) we will take the bin j — x; and the corresponding alias bin otherwise

@ however the same sampling can be straightforwardly done even with only one random number

@ drawbacks compared to the "simply” equally probably CDF:

@ the monotonic property of the CDF is "lost” i.e. {5 < &p 4 xa < Xp since probabilities are mixed
from different bins (cannot used for sampling in a restricted interval)
@ additional random number is needed to perform the interpolation (within the sampled bin)

Mihaly Novak Geant4 EM meetin,
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Few words on sampling
0®00
Interpolation of the inverse CDF

interpolation of the inverse CDF: after the determination of bin j such that P(§;) < & < P(&j+1) one

needs to solve P71(¢) = x i.e. interpolation within P71(&) = x < P7H(¢) = x < P7Y(&41) = x41

@ using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF

between x; and x;11 (P~1(&) = x;, P~ 1(&j4+1) = xj+1) with a constant
—1 -1
@ the applied interpolation should satisfy %5(5) = (%ﬁx)) = -1 and P*I(gj) = Xxj,
PHEj+1) = Xj41

one can approximate the CDF within the bin by using second order Taylor approximation:

o P(x) = P(x) = P(x) + P’ (x)[x — x] + 0.5P" (x;)[x — x]* =
P(x5) + POx;)[x — x5] + 050 (x)[x — xi1? & P(x) + p(xg)[x — x] + 0.5 2Ll [, 2

%1%

p(x)

o that resuts in x = P(E) ~ P1(E) = x5~ |ply) — /p20x) + 26l€ &1 /s ¢ = D
J J
® aP e _ 1
a N
dp—?! B5—
o dé(g)\gzgj = p(ij) and P 1(5}) = Xj
° dﬁ;;(g) ety p(xjﬂ) and P1(€j11) = xj41 only if p(x) is linear between x;, X1
=&,
@ then the sampled value x ~ %X = P~1(¢) = x; — [p(xj) — \/P2(xj) + 2c[€ — gj]} /¢, where
c = PLyr1)=plx)
X1
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Few words on sampling
coeo

Interpolation of the inverse CDF
interpolation of the inverse CDF: after the determination of bin j such that P(§;) < & < P(&j+1) one
needs to solve P71(¢) = x i.e. interpolation within P71(&) = x < P7H(¢) = x < P7Y(&41) = x41
@ using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF
between x; and xj11 (P~1(&) = x;, P~ 1(&4+1) = xj+1) with a constant
—1 -1
@ the applied interpolation should satisfy %5(5) = (%ﬁx)) = ﬁ and P71(§) = x;,
P (E41) = Xj1
@ a better solution is to use rational function approximation in the form of

- ~ P— _ (1+a;+bj) £—¢;
o x=P 1) =P =x+ m[xm = %], where a = ==
o PI(¢&) = x and P~1(&41) = xj41 independently form the values aj, b;
aP~1(¢) _ (1+aj+bj)(1—bja2) Xj41—X

S - b i
° & T Mraatba’? &g and the parameters aj, b; can be determined from the
requirements
AP~ _ 1
g |g=¢; — P0Y)
dP () __1

dE |g=gj1  PO11)

; 1 | &g 1 Er—§& 1
@ that yields b; =1 [xj-ﬂij-} Ferem) and a; = i 505
~ o _ D1 .. (1+aj+bj)a _ £—¢;
@ then the sampled value x ® X =P~ 1(§) = x; + fEr——— [Xi+1 — xj], with o = g

[F.Salvat,J.M.Fernandez-Varea,J.Sempau,PENELOPE-2011,NEA /NSC/DOC(2011)5]
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Few words on sampling
oooe

Interpolation of the inverse CDF

The new version of Kawrakow-Bielajew Goudsmit-Saunderson model:

@ ¢°*(s/\, Gis/\; u) PDFs are pre-computed over a 2D s/), Gis/)\ grid using an £max = 10% limit in the
GS series

@ the previously discussed variable transformation is used to achieve smooth PDFs

@ statistical interpolation in log(s/)) and Gis/\ is used that gives accurate results (no loop, no search, no
conditions, 2 random numbers)

@ pre-computed data are stored over the 2D parameter grid in form of inverse CDFs with equally probably
bins achieved by using rational interpolation :
@ bin identification i.e. find k such that & < & < £x41 can be done in one step(no loop, no search,
no conditions)
@ then rational interpolation is used to solve 73_1(5) =x, & < & < &kr1(proper derivatives, no loop,
no search, no conditions)
@ only 1 random number is needed to preform the sampling

@ results in:

@ accurate, robust sampling
@ significant speed-up: TestEm5 with the new version is about 10% faster than the current version
(reached or even faster than opt0)
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Preliminary results

Ep =15.7 [MeV] e- transmitted through 9.66 pm Au

0.05 T : : T
e  Exp.
L G4-opt0 4

0.045 -4 G4-GS-current

0.04 G4-GS-current-(bigger delta) i

g — G4-GS-new

--------- th.-Wentzel-DCS+

_ 0035 th..PWA-DCS i
o
%’J 0.03 )
2 0025 )
)
<
< 0.02 )
&

0.015 ]

0.01 )

0.005 q

0 .
0 2 4 6 8 10
O [deg]

exp.: [A.O.Hanson et al., Phys.Rev.84(1951)634]
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Preliminary results

Ep =10 [MeV] e- transmitted through 10.0 um Si

1.2 T T T
b — th.-PWA-DCS
A G4-opt0
— G4-GS-new
G4-SS b

W
(5}
=
2 i
2
=)
]
&
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Preliminary results

E,, = 2.25 [MeV] e- transmitted through 98.518 um Al [Z = 13]
14 T

2.25 [MeV] e- transmitted through 98.518 um Al [Z = 13]
10 T
&~ oxp [PhysRev T 254 1942] S~ oxp [Phys RevT254.1942]
MC Geantd-opt0 t0
—— mc Geanld—GS(ne ) MG Geanta S(new)
—— theory (GS-series with PWA DCS) theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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E,, = 2.25 [MeV] e- transmitted through 19.568 um Fe [Z = 26]

! ®  oxp. [Phys.
MC Geantd-
—— NIC Geantd-

—— theory (GS-series with PWA DCS)

ev.61.254.(1942)]
-opt0
GS(new)

exp.: [L.Kulchitsky,
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Preliminary results

.25 [MeV] e- transmitted through 19.568 um Fe [Z = 26]

® exp. [Phys.Rev.61.254(1942)]
MC Geantd-opt0

MC Geantd-GS(new)

theory (GS-series with PWA DCS)

Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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E,, = 2.25 [MeV] e- transmitted through 19.141 um Cu [Z = 29]
12 T

® oxp. [Phys.Rev.61254(1942)]
MC Geantd-opt0

—— MC Geantd-GS(new)

—— theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky,

10° T

Preliminary results

2.25 [MeV] e- transmitted through 19.141 um Cu [Z = 29]

exp. [Phys.Rev.61.254.(1942)]
MC Geantd-opt0

MC Geantd-GS(new)

theory (GS-series with PWA DCS)

Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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Preliminary results

E,, = 2.25 [MeV] e- transmitted through 12.0623 um Mo [Z = 42] E, =2.25 [MeV] e- transmitted through 12.0623 um Mo [Z = 42]
12 T 10? T
® exp. [ths Rev. 51 254.(1942)] 0 exp. [Pnys.Rev.m.zsA.uQAz)]
MC Geantd-opt0 t0
e Geana CBhew) MG Qoo cnen)
—— theory (GS-series with PWA DCS) theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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E, = 2.25 [MeV] e- transmitted through 11 um Ag [ = 47]

® oxp. [Phys.Rev.61254(1942)]
MC Geantd-opt0
—— MC Geantd-GS(new)
—— theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky,

Preliminary results

225 [MeV] - transmitted through 11 um Ag [Z = 47]

exp. [Phys.Rev.61.254.(1942)]

MC Geantd-opt0

MC Geantd-GS(new)

theory (GS-series with PWA DCS)

Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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Preliminary results

E,, = 2.25 [MeV] e- transmitted through 23.803 um Sn [Z = 50] 2.25 [MeV] e- transmitted through 23.803 um Sn [Z = 50]
7 T T 10 T
® exp. [ths Rev. 51 254.(1942)] 0 exp. [Pnys.Rev.m.zsA.uQAz)]
MC Geantd-opt0 t0
e Geana CBhew) MG Qoo cnen)
—— theory (GS-series with PWA DCS) theory (GS-series with PWA DCS)
100k

exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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E,, = 2.25 [MeV] e- transmitted through 5.3325 pm Ta [Z = 73]
12 T

® oxp. [Phys.Rev.61254(1942)]
MC Geantd-opt0

—— MC Geantd-GS(new)

—— theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky,

Preliminary results

.25 [MeV] e- transmitted through 5.3325 um Ta [Z = 73]

® exp. [Phys.Rev.61.254(1942)]
MC Geantd-opt0

MC Geantd-GS(new)

theory (GS-series with PWA DCS)

Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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Preliminary results

E, = 2.25 [MeV] e- transmitted through 4.6114 um Au [Z = 79] 2.25 [MeV] e- transmitted through 4.6114 um Au [Z = 79]

10 T 10 T
® exp. [ths Rev. 51 254.(1942)] exp. [Phys.Rev.61.254.(1942)]
MC Geantd-opt0 MC Geantd-optd
e Geana CBhew)
N —— theory (GS-series with PWA DCS)

exp.: [L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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2.25 [MeV] e- transmitted through 6.96 um Pb [ = 82]

exp. [Phys.Rev 61254 (1942)]
MC Geantd-opt0

e Geana CBhew)
—— theory (GS-series with PWA DCS)

exp.:
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Preliminary results

E, = 2.25 [MeV] e- transmitted through 6.96 um Pb [Z = 82]

10? T

exp. [Phys Rev.67.254.(1942)]
t0

MG Qoo cnen)
theory (GS-series with PWA DCS)

[L.Kulchitsky, Phys.Rev.61(1941)254]; normalized to theory at 6 = 0
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Preliminary results

E,=0.521 [MeV]e- in Al
45 T T T T T T

T

° Exp.
G4-opt0
—— G4-GS-new

Egep [MeV/giem’]

0 1 1 1 1 1 1 1 1 o
"

0 0l 02 03 04 05 06 07 08 09 1
R/R,

exp.: [G.J.Lockwood et al., Sandia report SAND79-0414.UC-34a, February 1987; O.Kadri et al., NIMB 258(2007)381}
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Conclusion and plans

@ the model in the form of the new implementation can be used as a relatively fast option with the
advantages (compared to opt0):

@ the model is free from tuning parameters
@ with limitations that can be well understood (— no more surprise)

@ the source of limitations is the simple form of the DCS for elastic scattering

@ note, that it is this simple analytical form that makes possible to obtain a material independent,
pre-computed table of angular distributions

@ any correction would lead material dependency

@ instead of introducing corrections based on more accurate numerical PWA-DCS for elastic scattering one
should investigate the possibly of using a separate model that based on these PWA-DCS
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Conclusion and plans

Thank you for your attention!
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