G4RadioactiveDecay workshop

Luciano Pandola

INFN, Laboratori Nazionali del Sud

RDM workshop at CERN

- Workshop at CERN, March 3rd and 4th, to review the status of the Radioactive Decay Module and the associated databases
 - <u>Participants</u>: L. Desorgher, A. Howard, V. Ivanchenko, M. Maire, LP, L. Sarmiento, D. Wright, J. M. Quesada (telecon), T. Koi (telecon)
 - Slides: https://indico.cern.ch/event/372884/
- Discussion items
 - Existing bugs (mostly reported by Michel)
 - some of them automatically fixed by enforcing the mutual coherence of G4NuclideTable, G4RADIOACTIVEDECAYDATA and G4GAMMALEVELDATA
 - Some information duplicated → can get rid of G4NuclideTable ?
 - Energy non-conservation due to the interface to the atomic de-excitation module following EC and IC decays
 - Maintainance and update of databases
 - Plans for future developments
 - New "exotic" decay channels, biasing, etc.
 - Testing

Where does EM package come into the game?

- Outstanding <u>coupling point</u> to the EM category: **atomic deexcitation**
 - Atomic vacancy following EC decay or IT
 - At the moment, no boolean flag to switch on/off the AD, it is always on for EC and always off for IT
 - Clearly a bug → will be fixed
 - Only fluorescence produced, no Auger e- (need to minimize i/o and memory allocation)
- Eventual source of energy non-conservation (bug report #1408)
 - The G4RadioactiveDecay process does not use to allow for any local energy deposition
 - The part of the atomic binding energy which is not used to create real secondaries is lost
 - Also, cuts come into the play
 - We have now the option to generare sub-threshold secondaries
 - G4RadioactiveDecay fills the G4ParticleChange, so it must be possible to fix "a posteriori" the energy conservation

Extension to super-heavy elements

- Proposal to extend the RDM to super-heavy nuclei (Z > 100)
 - Will need atomic de-excitation data, as binding energies, etc
 - Theoretical calculations and predictions exist, so the fluo/ database could be extended "easily"
 - We are **not** going to use super-heavy elements in any **G4Material** (but only as primary particles), so we don't need to provide data files for bremsstrahlung, dE/dx, etc.
 - The highest-Z element that could be sensibly used for a G4Material is in my knowledge Am (Z=95), because of AmBe sources
- The EM code has quite a lot of hard-coded if-blocks like

```
if (Z>5 && Z<100){
    [do things]
}</pre>
```

- Driven by the 250-eV cut (Z>5) and by the availability of data files (Z<100)
- Need to properly get rid of (or cure) these blocks