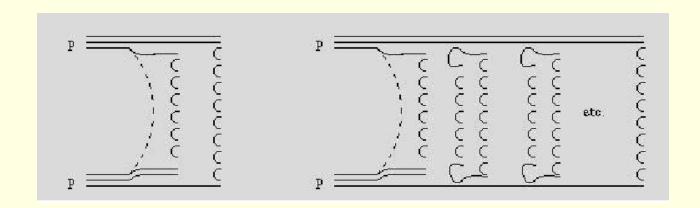
Low and High Energy Modeling in Geant4

Hadronic Shower Simulation Workshop FNAL, 6-8 September 2006 Dennis Wright (on behalf of Geant4 Collaboration)

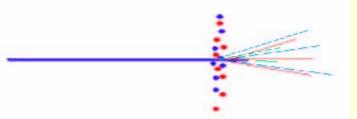
Overview

- Quark-Gluon String Model
- Bertini Cascade
- Binary Cascade
- CHIPS

Origin of the QGS (Quark-Gluon String) Model


- Author: H-P. Wellisch, M. Komagorov
- Most code unique to Geant4
 - guidance from Dubna QGS model (N.S. Amelin)
 - fragmentation code based on pre-existing FORTRAN

Applicability


- Incident p, n, π , K
- \blacksquare Also for high energy γ when CHIPS model is connected
- ~20 GeV < E < 50 TeV</p>
- Model handles:
 - Selection of collision partners
 - Splitting of nucleons into quarks and diquarks
 - Formation and excitation of quark-gluon string
 - String hadronization
- Damaged nucleus remains. Another Geant4 model must be added for nuclear fragmentation and deexcitation
 - pre-compound model, or CHIPS for nuclear fragmentation

Quark Gluon String Model

- Two or more strings may be stretched between partons within hadrons
 - Strings from cut cylindrical Pomerons
- Parton interaction leads to color coupling of valence quarks
 - sea quarks included too
- Partons connected by quark gluon strings, which hadronize

Quark Gluon String Model Algorithm

- Build up 3-dimensional model of nucleus
- **Large** γ -factor collapses nucleus to 2 dimensions
- Calculate impact parameter with all nucleons
- Calculate hadron-nucleon collision probabilities
 - based on quasi-eikonal model, using Gaussian density distributions for hadrons and nucleons
- Sample number of strings exchanged in each collision
- Unitarity cut, string formation and decay

The Nuclear Model

- Nucleon momenta are sampled assuming Fermi gas model
- Nuclear density
 - harmonic oscillator shape for A < 17</p>
 - Woods-Saxon for others
- Sampling is done in a correlated manner:
 - local phase-space densities are constrained by Pauli principle
 - sum of all nucleon momenta must equal zero

Collision Criterion

In the Regge-Gribov approach, the probability of an inelastic collision with nucleon i can be written as

$$p_i(b_i, s) = (1/c)(1 - \exp[-2u(b_i, s)]) = \sum_{n=1}^{\infty} p_{i(n)}(b_i, s)$$

where

$$p_{i^{(n)}}(b_i, s) = (1/c) \exp[-2u(b_i, s)] \frac{[2u(b_i, s)]^n}{n!}$$

is the probability of finding n cut pomerons in the collision

$$u(b_i,s) = \frac{z(s)}{2} \exp(b_i^2/4L(s))$$

is the eikonal amplitude for hadron-nucleon elastic scattering with pomeron exchange

Pomeron Parameters

- The functions z(s) and L(s) contain the pomeron parameters:
 - fitted to N-N, π –N, K-N collision data (elastic, total, single diffraction cross sections)
 - pomeron trajectory: $\alpha_{\rm P}' = 0.25~{\rm GeV^{-2}}$, $\alpha_{\rm P}(0) = 1.0808~{\rm for}$ $\pi, \, {\rm K}, \, 0.9808~{\rm for}~{\rm N}$
- Other parameters:
 - energy scale $s_0 = 3.0 \text{ GeV}^2$ for N, 1.5 GeV² for π , 2.3 GeV² for K
 - Pomeron-hadron vertex parameters also included:
 - coupling: $\gamma_P^N = 6.56 \text{ GeV}^{-2}$
 - radius of interaction: R^{2N}_P = 3.56 GeV⁻²

Diffractive Dissociation

- Need to sample the probability of diffraction
 - get it from difference of total and inelastic collision probabilities

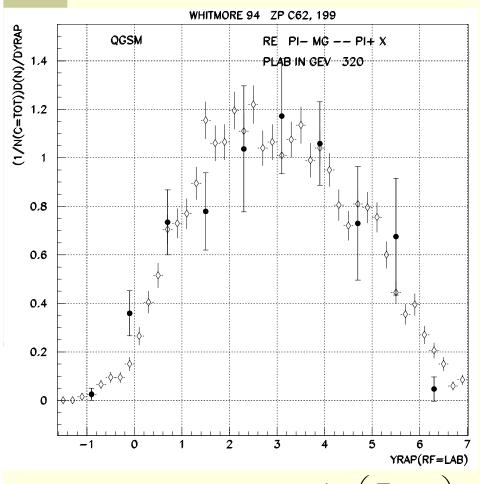
$$p_{ij}^{diff}(b_{ij},s) = \frac{c-1}{c}(p_{ij}^{tot}(b_{ij},s) - p_{ij}^{tot}(b_{ij},s))$$

- where c is the "shower enhancement" coefficient
- $\mathbf{c} = 1.4$ for nucleons, 1.8 for pions
- Splitting off diffraction probabilities with parameter c follows method of Baker 1976

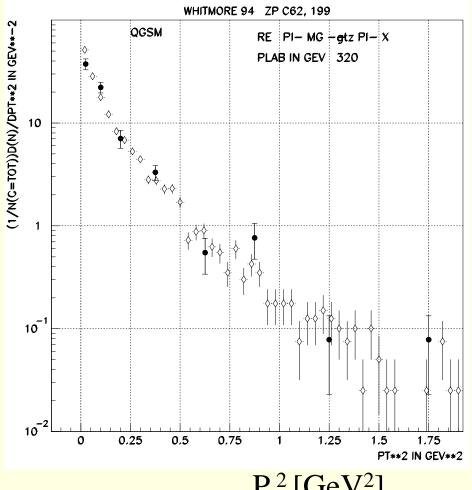
String Formation

- Cutting the pomeron yields two strings
- String formation is done by parton exchange (Capella 94, Kaidalov 82)
 - for each participating hadron, parton densities are sampled
 - requires quark structure function of hadron
 - parton pairs combined into color singlets
 - sea quarks included with u:d:s = 1: 1: 0.27

Longitudinal String Fragmentation

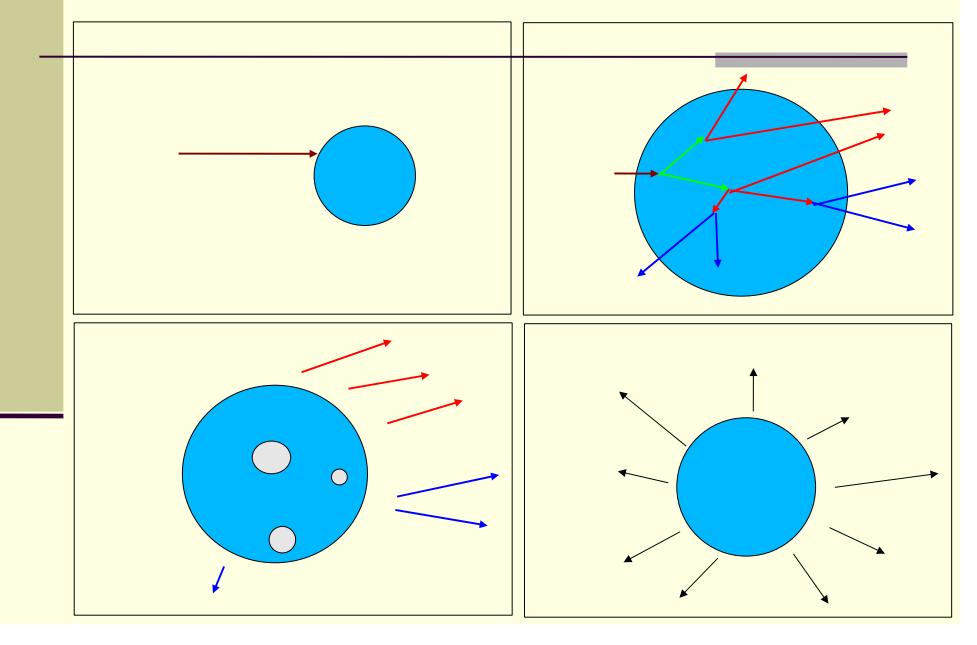

- String extends between constituents
- Break string by inserting q-qbar pair according to

```
\blacksquare u : d : s : qq = 1 : 1 : 0.27 : 0.1
```


- At break -> new string + hadron
- Gaussian P_t , $\langle P_t^2 \rangle = 0.5 \text{ GeV}$
- Created hadron gets longitudinal momentum from sampling QGSM fragmentation functions
 - Lund functions also available

QGSM - Results

 $pi-Mg \rightarrow pi+X$, Plab 320 GeV/c



Rapidity
$$\eta = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

 P_t^2 [GeV²]

Cascade Modeling Concept

Geant4 Bertini Cascade: Origin

- A re-engineered version of the INUCL code of N. Stepanov (ITEP)
- Employs many of the standard INC methods developed by Bertini (1968)
 - using free particle-particle collisions within cascade
 - step-like nuclear density
- Similar methods used in many different intra-nuclear transport codes

Applicability of the Bertini Cascade

- inelastic scattering of p, n, π , K, Λ , Σ , Ξ
- incident energies: 0 < E < 10 GeV</p>
 - upper limit determined by lack of partial final state cross sections and the end of the cascade validity region
 - lower limit due to inclusion of internal nuclear deexcitation models
- in principle, can be extended to:
 - anti-baryons
 - ion-ion collisions

Bertini Cascade Model

The Bertini model is a classical cascade:

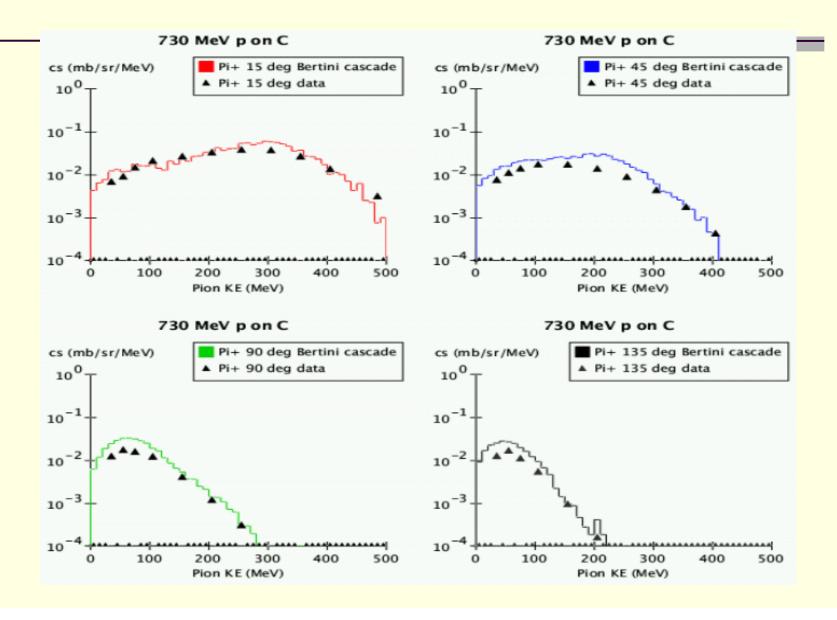
- it is a solution to the Boltzmann equation on average
- no scattering matrix calculated

Core code:

- elementary particle collider: uses free cross sections to generate secondaries
- cascade in nuclear medium
- pre-equilibrium and equilibrium decay of residual nucleus
- nucleus modelled as three concentric spheres of different densities; density constant within sphere

Bertini Cascade Modeling Sequence (1)

- Nuclear entry point sampled over projected area of nucleus
- Incident particle is transported in nuclear medium
 - mean free path from total particle-particle cross sections
 - nucleus modeled as 3 concentric, constant-density shells
 - nucleons have Fermi gas momentum distribution
 - Pauli exclusion invoked
- Projectile interacts with a single nucleon
 - hadron-nucleon interactions based on free cross sections and angular distributions
 - pions can be absorbed on quasi-deuterons


Bertini Cascade Modeling Sequence (2)

- Each secondary from initial interaction is propagated in nuclear potential until it interacts or leaves nucleus
 - can have reflection from density shell boundaries
 - currently no Coulomb barrier
- As cascade collisions occur, exciton states are built up, leading to equilibrated nucleus
 - selection rules for p-h state formation: $\Delta p = 0$, +/1, $\Delta h = 0$, +/-1, $\Delta n = 0$, +/-2
- Model uses its own exciton routine based on that of Griffin
 - Kalbach matrix elements used
 - level densities parametrized vs. Z and A

Bertini Cascade Modeling Sequence (3)

- Cascade ends and exciton model takes over when secondary KE drops below 20% of its original value or 7 X nuclear binding energy
- Nuclear evaporation follows for most nuclei
 - lacktriangle emission continues as long as excitation is large enough to remove a neutron or α
 - γ emission below 0.1 MeV
- For light, highly excited nuclei, Fermi breakup
- Fission also possible

Validation of the Bertini Cascade

Origin and Applicability of the Binary Cascade

- H.P. Wellisch and G. Folger (CERN)
- Based in part on Amelin's kinetic model
- Incident p, n

- light ions
 - 0 < E < ~3 GeV/A
- π
 - 0 < E < ~1.5 GeV

Binary Cascade

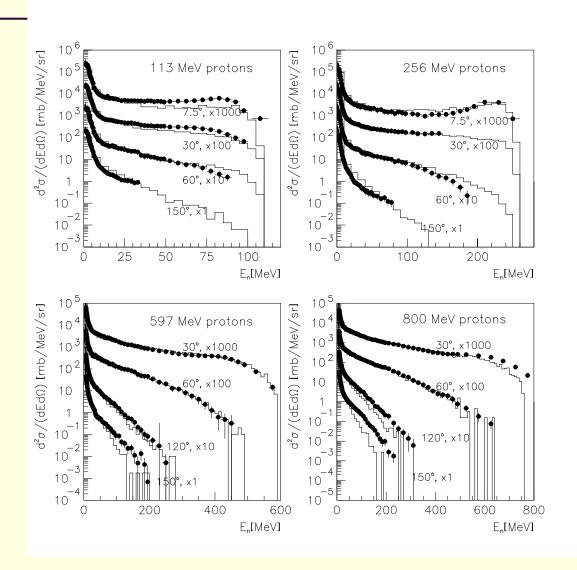
- Hybrid between classical cascade and full QMD model
- Detailed model of nucleus
 - nucleons placed in space according to nuclear density
 - nucleon momentum according to Fermi gas model
- Nucleon momentum taken into account when evaluating cross sections, collision probability
- Collective effect of nucleus on participant nucleons described by optical potential
 - numerically integrate equation of motion

Binary Cascade Modeling (1)

- Nucleon-nucleon scattering (t-channel) resonance excitation cross-sections are derived from p-p scattering using isospin invariance, and the corresponding Clebsch-Gordan coefficients
 - elastic N-N scattering included
- Meson-nucleon inelastic (except true absorption) scattering modelled as s-channel resonance excitation. Breit-Wigner form used for cross section.
- Resonances may interact or decay
 - nominal PDG branching ratios used for resonance decay
 - masses sampled from Breit-Wigner form

Binary Cascade Modeling (2)

- Calculate imaginary part of the R-matrix using free 2body cross-sections from experimental data and parametrizations
- For resonance re-scattering, the solution of an inmedium BUU equation is used.
 - The Binary Cascade at present takes the following strong resonances into account:
 - The delta resonances with masses 1232, 1600, 1620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950 MeV
 - Excited nucleons with masses 1440, 1520, 1535, 1650, 1675, 1680, 1700, 1710, 1720, 1900, 1990, 2090, 2190, 2220, and 2250 MeV


Binary Cascade Modeling (3)

- Nucleon-nucleon elastic scattering angular distributions taken from Arndt phase shift analysis of experimental data
- Pauli blocking implemented in its classical form
 - finals state nucleons occupy only states above Fermi momentum
- True pion absorption is modeled as s-wave absorption on quasi-deuterons
- Coulomb barrier taken into account for charged hadrons

Binary Cascade Modeling (4)

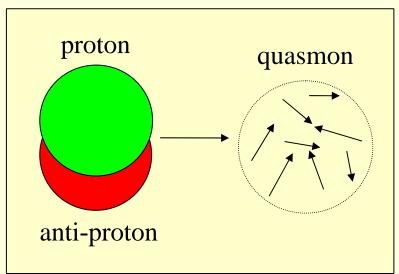
- Cascade stops when mean energy of all scattered particles is below A-dependent cut
 - varies from 18 to 9 MeV
 - if primary below 45 MeV, no cascade, just precompound
- When cascade stops, the properties of the residual exciton system and nucleus are evaluated, and passed to a pre-equilibrium decay code for nuclear de-excitation

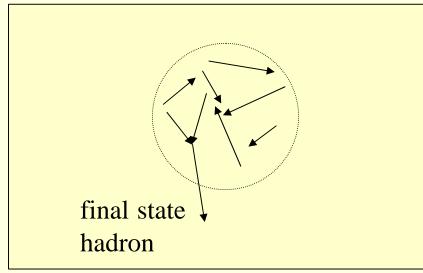
Binary Cascade - results

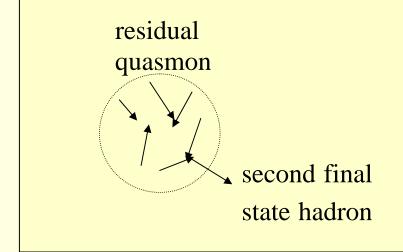
p Pb -> n X

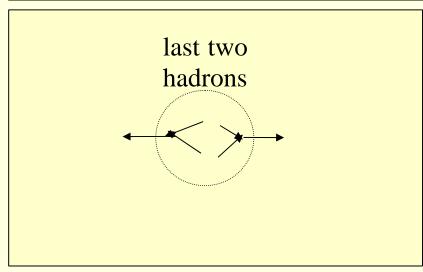
Chiral Invariant Phase Space (CHIPS)

- Origin: M.V. Kosov (CERN, ITEP)
 - Manual for the CHIPS event generator, KEK internal report 2000-17, Feb. 2001 H/R.
- Use:
 - capture of negatively charged hadrons at rest
 - anti-baryon nuclear interactions
 - gamma- and lepto-nuclear reactions
 - back end (nuclear fragmentation part) of QGSC model


CHIPS Fundamental Concepts


- Quasmon: an ensemble of massless partons uniformly distributed in invariant phase space
 - a 3D bubble of quark-parton plasma
 - can be any excited hadron system or ground state hadron
- Critical temperature T_C: model parameter which relates the quasmon mass to the number of its partons:
 - $M_Q^2 = 4n(n-1)T_C^2 => M_Q \sim 2nT_C$ ■ $T_C = 180 - 200 \text{ MeV}$
- Quark fusion hadronization: two quark-partons may combine to form an on-mass-shell hadron
- Quark exchange hadronization: quarks from quasmon and neighbouring nucleon may trade places

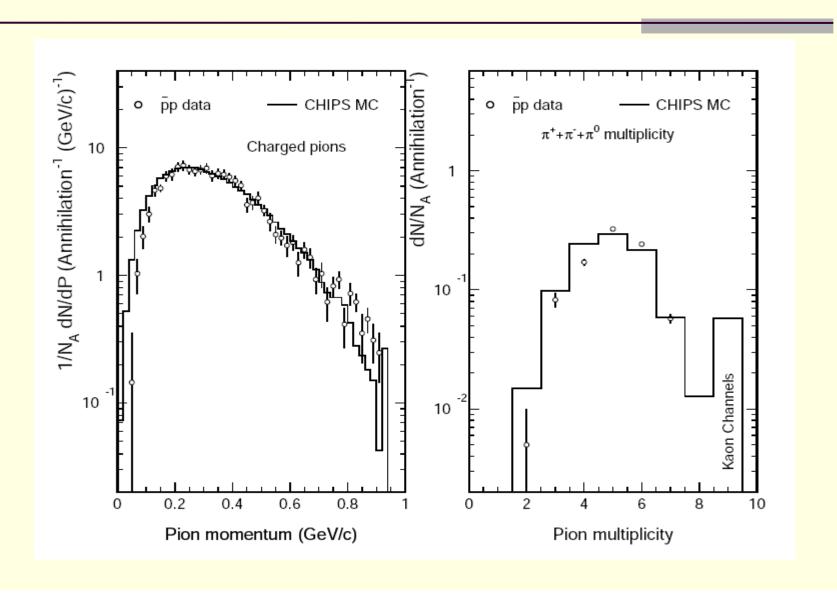

CHIPS Applications


- u,d,s quarks treated symmetrically (all massless)
 - model can produce kaons, but s suppression parameter is needed, η suppression parameter also required
 - real s-quark mass is taken into account by using masses of strange hadrons
- CHIPS is a universal method for fragmentation of excited nuclei (containing quasmons).
- Unique, initial interactions were developed for:
 - interactions at rest such as π capture, pbar annihilation
 - gamma- and lepto-nuclear reactions
 - hadron-nuclear interaction in-flight are in progress
- Anti-proton annihilation on p and π^- capture at rest in a nucleus illustrate two CHIPS modelling sequences

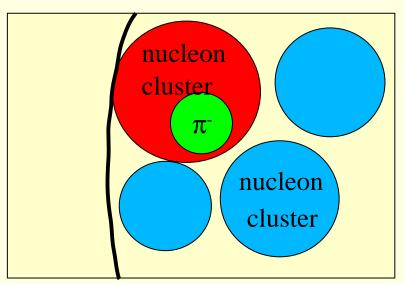
Modeling Sequence for Proton – antiproton Annihilation (1)

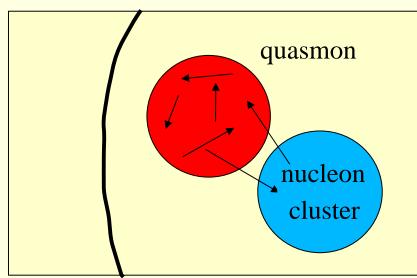
Modeling Sequence for Proton - antiproton Annihilation (2)

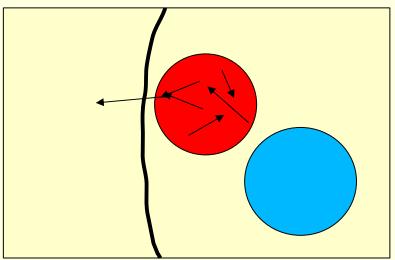
- anti-proton and proton form a quasmon in vacuum
 - no quark exchange with neighboring nucleons
 - n = M/2T_C quark-partons uniformly distributed over phase space with spectrum dW/kdk α (1 2k/M)ⁿ⁻³
- quark fusion occurs
 - calculate probability of two quark-partons in the quasmon to combine to produce effective mass of outgoing hadron:
 - sample k in 3 dimensions
 - second quark momentum q from spectrum of n-1 quarks
 - integrate over vector q with mass shell constraint for outgoing hadron

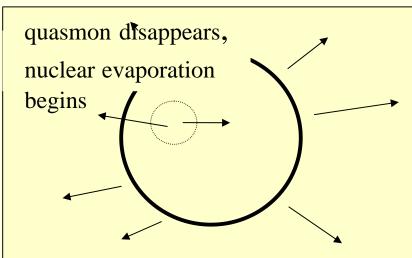

Modeling Sequence for Proton - antiproton Annihilation (3)

- determine type of final state hadron to be produced
 - probability that hadron of given spin and quark content is produced: $P = (2s_h + 1) z^{N-3} C_O$
 - C_Q is the number of ways a hadron h can be made from the choice of quarks in the quasmon
 - z^{N-3} is a kinematic factor from the previous momentum selection
- first hadron is produced, escapes quasmon
- randomly sample residual quasmon mass, based on original mass M and emitted hadron mass


Modeling Sequence for Proton - antiproton Annihilation (4)


- Repeat quark fusion with reduced quasmon mass and quark-parton content
- hadronization process ends when minimum quasmon mass m_{min} is reached
 - m_{min} is determined by quasmon quark content at final step
 - depending on quark content, final quasmon decays to two hadrons or a hadron and a resonance
 - kaon multiplicity regulated by the s-suppression parameter (s/u = 0.1)


Validation of CHIPS for Proton Anti-Proton Annhilation



Modeling Sequence for π^- Capture at Rest in a Nucleus (1)

Modeling Sequence for π^- Capture at Rest in a Nucleus (2)

- pion captures on a subset or cluster of nucleons
 - resulting quasmon has a large mass, many partons
 - capture probability is proportional to number of clusters in nucleus
 - 3 clusterization parameters determine number of clusters
- both quark exchange and quark fusion occurs
 - only quarks and diquarks can fuse
 - mesons cannot be produced, so quark-anti-quark cannot fuse as in vacuum case (p-pbar)
 - because q-qbar fusion is suppressed, quarks in quasmon exchange with neighboring nucleon or cluster
 - produces correlation of final state hadrons

Modeling Sequence for π^- Capture at Rest in a Nucleus (3)

- some final state hadrons escape nucleus, others are stopped by Coulomb barrier or by over-barrier reflection
- as in vacuum, hadronization continues until quasmon mass reaches lower limit m_{min}
 - in nuclear matter, at this point nuclear evaporation begins
 - if residual nucleus is far from stability, a fast emission of p, n, α is made to avoid short-lived isotopes

Known Problems and Improvements (1)

QGS:

- gaussian sampling of p_T too simple => incorrect diffraction, not enough π^- suppression in p scattering
- internal cross sections being improved
- Medium energy (~10 GeV 60 GeV):
 - too low for QGS, HEP models
 - too high for cascade, LEP models
 - improved parametrized model being developed

Cascades:

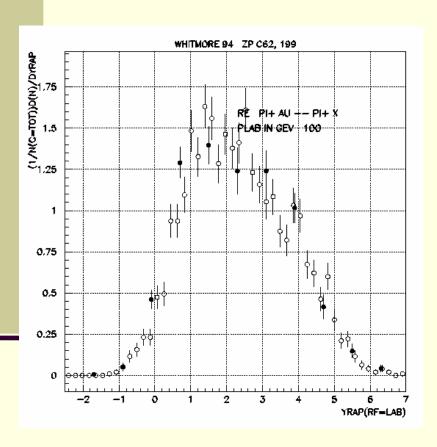
no Coulomb barrier in Bertini

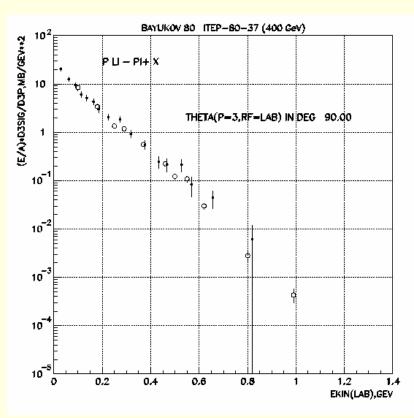
Known Problems and Improvements (2)

CHIPS:

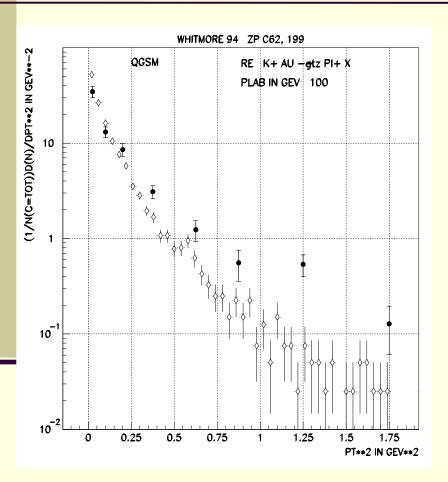
- originally designed only as final state generator, not intended for projectile interaction with nucleus
- extension planned for inelastic scattering
- neutrino scattering recently added

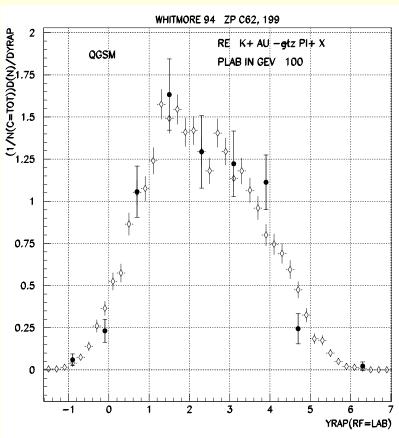
Backup Slides

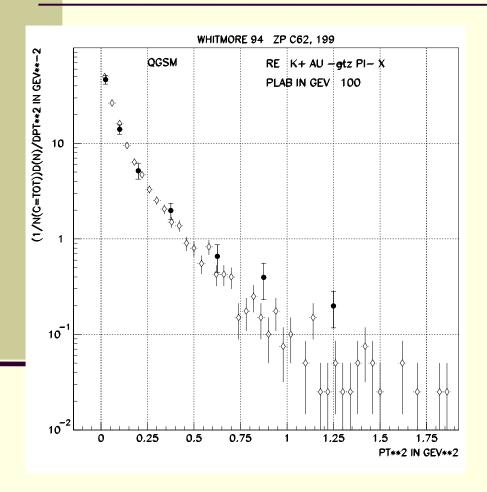

String Formation


- Cutting the pomeron yields two strings
- String formation is done by parton exchange (Capella 94, Kaidalov 82)
 - for each participating hadron h, parton densities are sampled

$$f^{h}(x_{1}, x_{2},..., x_{2n-1}, x_{2n}) = f_{0} \prod_{i=1}^{2n} u_{p_{i}}^{h}(x_{i}) \delta(1 - \sum_{i=1}^{2n} x_{i})$$


- parton pairs combined to form color singlets
- u is quark structure function of hadron h
- sea quarks included with u:d:s = 1: 1: 0.27


QGS Model Pion and proton scattering


QGS Model K+ Scattering from Au (π⁺ inclusive)

Solid dots: J.J.Whitmore et.al., Z.Phys.C62(1994)199

QGS Model K+ Scattering from Au (π inclusive)

Solid dots: J.J.Whitmore et.al., Z.Phys.C62(1994)199

Chiral Invariant Phase Space (CHIPS)

- Hadron spectra reflect spectra of quark-partons within quasmon
 - 1-D quark exchange:

$$k + M = q + E, k = p - q => k = (E - M + p)/2$$

■ 1-D quark fusion:

$$k + q = E, k - q = p => k = (E + p)/2$$

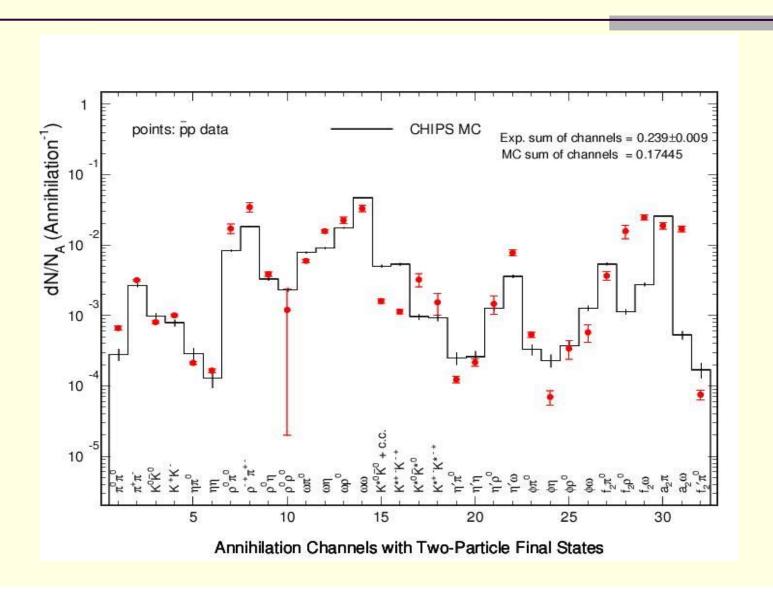
Currently Implemented Mechanisms (1)

Negative meson captured by nucleon or nucleon cluster:

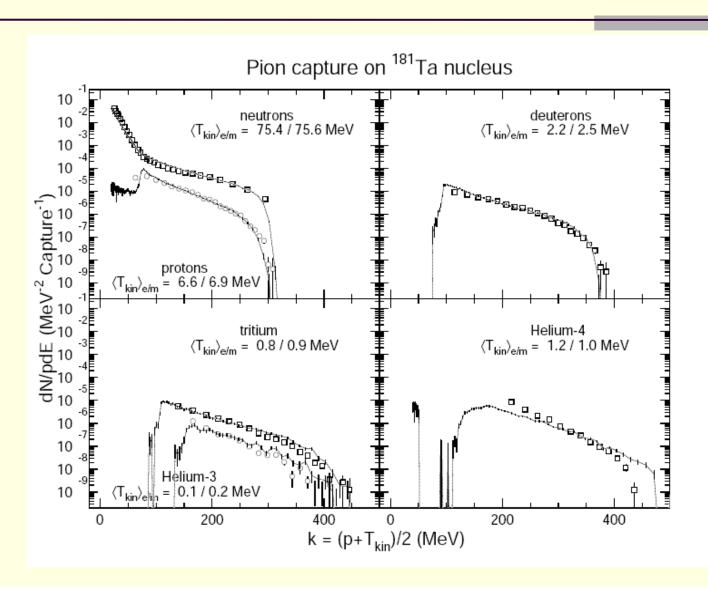
$$\blacksquare dE_{\pi} = m_{\pi}, dE_{K} = m_{K} + m_{N} - m_{\Lambda}$$

Negative hyperon captured by nucleon or nucleon cluster:

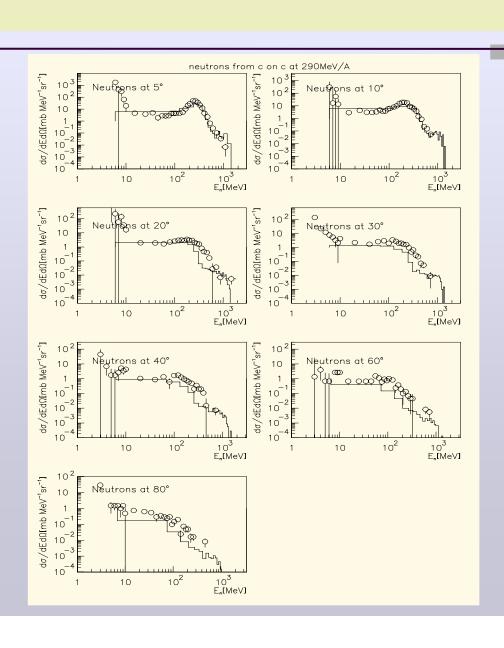
- Nuclear capture of anti-baryon:
 - annihilation happens on nuclear periphery
 - \blacksquare 4π explosion of mesons irradiates residual nucleus
 - secondary mesons interacting with residual nucleus create more quasmons in nuclear matter
 - large excitation: dE = m_{antibaryon} + m_N

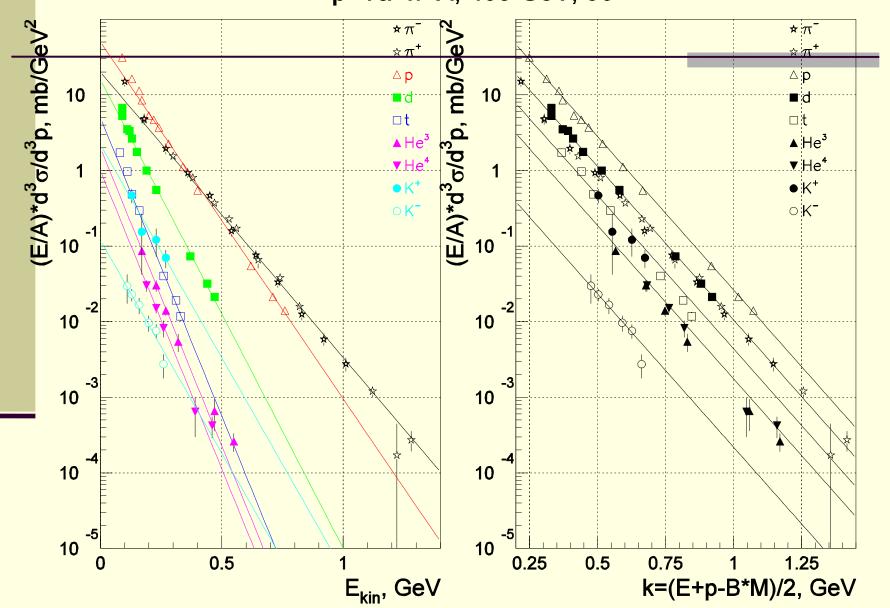

Currently Implemented Mechanisms (2)

In photo-nuclear reactions γ is absorbed by a quarkparton


$$\blacksquare dE_{\gamma} = E_{\gamma}$$

- In back-end of string-hadronization (QGSC model) soft part of string is absorbed:
 - \blacksquare dE_{OGSC} = 1 GeV/fm
- lepto-nuclear reactions γ^* , W are absorbed by quark-parton:
 - $\blacksquare dE_1 = E_{\gamma*}$, $\cos(\theta_k) = (2k/v Q^2)/2kq$, $Q^2 = q^2 v^2$
 - with k < M/2, if $q v < m_N$, virtual γ cannot be captured by one nucleon


P-pbar Annihilation into Two Body Final States


Validation of CHIPS Model for Pion Capture at Rest on Tantalum

Neutrons from C on C at 290 MeV/c

