

Benchmarking of the FLUKA code

<u>Paola R. Sala, Giuseppe Battistoni,</u> INFN Milan, Italy Alfredo Ferrari CERN HSS06

Thin target

Neutron production at low-intermediate energies

where most of the interactions occur.

Coalescence

10⁻¹

100

200

E_{k lab} (MeV)

High energy light fragments through the coalescence mechanism

double differential d production double differential t production from 383 MeV neutrons on Copper from 542 MeV neutrons on Copper Nucl. Phys. A510, 774 (1990) Cu(n,xt), <E> = 542 MeV 10⁵ Cu(n,xd), <E> = 383 MeV 2 4 54° ×256 10⁵ 54° x256 68° ×64 2 68° x64 10⁴ 90° ×16 121° ×4 121° ×4 2 164° ×1 4 10⁴ 2 10³ 2 4 10³ 2 µb∕sr/MeV µb∕sr/MeV 10² 2 10^{2} 4 2 4 10¹ 2 10^{1} 4 4 2 2 10⁰ 10⁰ 4 4 2 2 10⁻¹

Paola Sala, HSS06

50

100

150

E_{k lab} (MeV)

200

250

Heavy lons

QMD's: Neutron production cross section

Phys. Rev C64 034607 (2001) Ar I Cu 95 MoV/A all b

The new QMD model: thick target example (full interface to FLUKA)

Phys. ReV. C62 044615 (2000) Ar + C 400 MeV/A all b

Simulations by F. Sommerer, K.Parodi, W. Enghardt, A.Aiginger Forscungszentrum Rossendorf (Dresden), Vienna Univ. of technology and CERN

Preliminary results: Head K. Parodi et al., to be published Clivel Chordoma, 0.96 GyE / field, $\Delta T_1 \sim 26 \min$, $\Delta T_2 \sim 16 \min$

* K. Parodi, H. Paganetti and T. Bortfeld, Massachusetts General Hospital

Calorimeters

ATLAS TILE Calorimeter (1994 setup)

1994 Test beam : 5 modules, positrons and positive pions beam, 20-300 GeV/c NIM A394,384 (1994)

proton contamination in the beam measured (Cerenkov counters) in a later testbeam:

Figure 3: The fractions of pions, protons and muons in the positive pion bea: energy.

Tile Calorimeter: effect of quenching

FLUKA simulations, 20 GeV/c 20° incidence diferent quenching parameters and effect of beam contamination on e/π and resolution

Tilecal: pion/proton difference

Р	π sig	gnal/	π resolution/		
(GeV/c)	proton	signal	proton resolution		
	Data	Fluka	Data	Fluka	
50	1.048	1.042	1.11	1.07 ±0.03	
80	1.036	1.034	1.17	1.09 ±0.03	

Data : ATL-TILECAL-2001-005

WARNINGS: data/fluka have different tile configurations angle of incidence is also different

FLUKA simulations: energy dependence

ATLAS combined calorimeter test beam

Layout of the experimental set-up (NIM A387,333(1997), NIM A449,461 (2000)) Test beams in 1994 and 1997, electrons and positive pions

Comparison with PION dataSIMULATIONSDATACalibration in electron scaleCut on mip in presamplerScintillator quenching includedCut on beam positionPhotostatistics convoluted(beam chambers)Noise added

Cut on preshower

Energy reconstructed using the ``benchmark'' technique

$$E_0 = E_{EM} + a \cdot Q_{had} + b \cdot \sqrt{E_{EM3} \cdot a \cdot Q_{had1}} + c \cdot E_{EM}^2$$

All parameters fixed to minimize σ/E_0 at 300~GeV

Atlas combined calo test beam: 1994 data

Experimental electron scale calibration available

	$a \; (\text{GeV/pC})$	b	$c \; (\mathrm{GeV}^{-1})$
FLUKA	0.172(2)	0.38(2)	-0.00038(10)
EXP	0.172	0.44	-0.00038

Atlas combined calo test beam: 1994 data

Atlas combined calo test beam: resolution

Energy resolution, 1994+1996 data

1996 Data Less electronic noise Better presampler No electron calibration

Note the experimental point at 20 GeV

2 simulated curves: different algorithms for preshower reconstruction

CERN-EU High-Energy Reference Field (CERF) facility

Top (left, one side removed) and side (right, roof removed) views of the CERF facility with the measuring positions

120 GeV secondary SPS mixed hadron beam

BEAM HO

CERF: results

	experimental		FLUKA		experimental		FLUKA	
	cts/PIC	%	$\mathrm{cts}/\mathrm{PIC}$	%	cts/PIC	%	$\mathrm{cts}/\mathrm{PIC}$	%
	CONCRETE TOP "E"			IRON TOP "C"				
LINUS rem counter*	0.364	0.36	0.409	2.2	1.78	0.30	1.68	2.1
SNOOPY rem counter [*]	0.200	0.59	0.207	3.3	1.83	0.75	1.71	2.0
233 sphere	0.788	0.33	0.899	3.7	9.28	0.28	9.23	2.0
178 sphere	0.989	0.36	1.01	3.4	16.1	0.24	16.9	1.9
133 sphere	1.02	0.30	0.981	3.2	19.2	0.19	21.2	1.9
108 sphere	0.942	0.35	0.883	3.1	17.7	0.20	19.2	1.9
83 sphere	0.704	0.30	0.717	3.1	11.2	0.26	12.1	1.9

Comparison between the FLUKA predictions and the experimental response of the various detectors in stray radiation fields at CERN^{*}. The percent statistical (%) uncertainty is indicated

* C.Birattari et al, Rad.Prot.Dos., <u>76</u> (1998), 135

TEPC Absorbed Dose Measurements and FLUKA Simulation CERF facility for mixed Radiation Field

TEPC Dose Equivalent Measurements and FLUKA Simulation CERF facility for mixed Radiation Field

CERN-EU High-Energy Reference Field (CERF) facility

Location of Samples:

Behind a 50 cm long, 7 cm diameter copper target, centred with the beam axis

Calculation of Induced Activity with FLUKA

- Simulation of particle interactions and transport in the target, the samples, as well as the tunnel/cavern walls
- Separate simulations for proton and pion beam
- Simulations of isotope production via
 - High-energy processes
 - Low-energy neutron interactions
- Transport thresholds
 - Neutrons: down to thermal energies
 - Other hadrons: until stopped or captured
 - No electromagnetic cascade was simulated
- Calculated quantities
 - Radioactive isotope production per primary particle
 - (Star density and particle energy spectra in the samples)
- Calculation of build-up and decay of radioactive isotopes for specific irradiation and cooling patterns including radioactive daughter products

Activation: Stainless Steel

Table 1: Stainless Steel, cooling times 1d 6h 28m, 17d 10h 39m

Isotope	$t_{1/2}$	Exp		OLD FLUKA/Exp		FLUKA/Exp	
		$\rm Bq/g \pm \%$		\pm %		\pm %	
Be 7	53.29d	0.205	24	0.096	34	1.070	30
Na 24	14.96h	0.513	4.3	0.278	8.6	0.406	13
K 43	22.30h	1.08	4.6	0.628	8.7	0.814	11
Ca 47	4.54d	0.098	25	0.424	44	(0.295)	62)
Sc 44	3.93h	13.8	4.8	0.692	5.8	0.622	6.2
mSc 44	58.60 h	6.51	7.1	1.372	8.1	1.233	8.6
Sc 46	83.79d	0.873	8.3	0.841	9.1	0.859	9.5
Sc 47	80.28h	6.57	8.2	0.970	9.7	1.050	13
Sc 48	43.67h	1.57	5.2	1.266	8.4	1.403	11
V 48	$15.97 \mathrm{d}$	8.97	3.1	1.464	3.8	1.354	4.8
Cr 48	21.56h	0.584	6.7	1.084	11	1.032	12
Cr 51	27.70d	15.1	12	1.261	13	1.231	13
Mn 54	312.12d	2.85	10	1.061	10	1.060	11
Co~55	17.53h	1.04	4.6	1.112	7.7	0.980	10
Co~56	77.27d	0.485	7.6	1.422	9.0	1.332	10
Co 57	271.79d	0.463	11	1.180	12	1.140	12
Co 58	70.82d	2.21	5.9	0.930	6.3	0.881	6.9
Ni 57	35.60h	3.52	4.5	1.477	6.5	1.412	8.2

M. Brugger, et al., Proceedings of the Int. Conf. on Accelerator Applications (AccApp'05), Venice, Italy, 2005

Cosmic Rays

FLUKA and Cosmic Ray physics: Atmospheric Showers

Two different streams:

- Basic research on Cosmic Ray physics (muons, neutrinos, EAS, underground physics,...)
- Application to dosimetry in civil aviation (DOSMAX Collaboration: Dosimetry of Aircrew Exposure to Radiation During Solar Maximum, research project funded by the EU)

Available dedicated FLUKA library + additional packages including:

- Primary spectra from Z = 1 to Z = 28 (derived from NASA and updated to most recent measurements.)
- Solar Modulation model (correlated to neutron monitors)
- Atmospheric model (MSIS Mass-Spectrometer-Incoherent-Scatter)
- 3D geometry of Earth + atmosphere
- Geomagnetic model

(3D) Calculation of Atmospheric V Flux

The first 3-D calculation of atmospheric neutrinos was done with FLUKA.

The enhancement in the horizontal direction, which cannot be predicted by a 1-D calculation, was fully unexpected, but is now generally acknowledged.

Comparison with AMS data

Protons and leptons below the geomagnetic cutoff have been measured by the AMS experiment at altitudes 370-390 Km, latitude ±51.7° Astrop. Phys. 20,221 (2003)

Dosimetry Applications

Ambient dose equivalent from neutrons at solar maximum on commercial flights from Seattle to Hamburg and from Frankfurt to Johannesburg.

Solid lines: FLUKA simulation

Neutrino Interactions

- from 400 QE golden fraction 16%
- background additional 20%

finally expected

80±9(stat.)±13(syst. → mainly QE fraction and beam simul)

to be compared with 86 events observed

Very good consistency with expectations

Simulations : FLUKA + C. Rubbia's detailed low energy neutron transport Assumption : 5 cm water moderator as in the design of the facility Comparison with measured neutron spectrum shows up to 20% difference in the range 1-10⁵ eV (published data) Paola Sala, HSS06 46

Preparing for Lead target dismount-Discovery that the water layer is 6 cm thick instead of 5

FLUKA simulations with 6 cm water (black) compared with 5 cm (red)

PRELIMINARY, thanks to V. Vlachoudis-CERN

