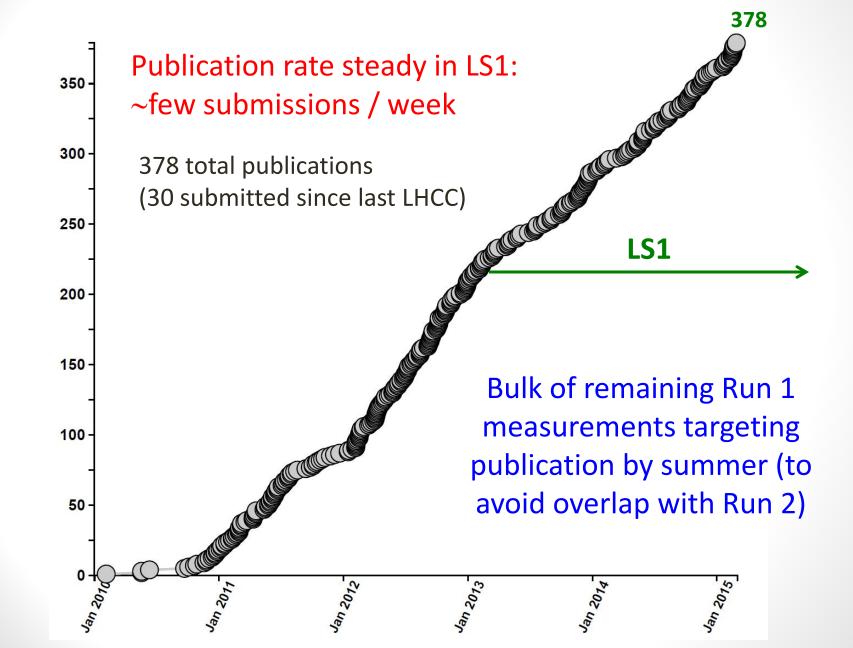
CMS Status Report

121st LHCC Meeting – Open Session

Jim Olsen
Princeton University
On behalf of the CMS Collaboration

Recent Physics Results


Detector Commissioning Status

Computing, Software, Physics Readiness

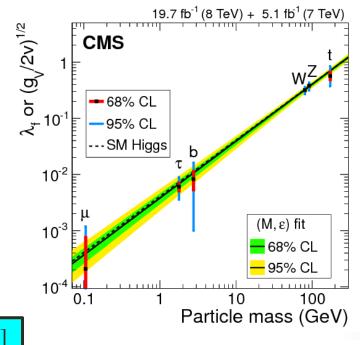
Publication Status

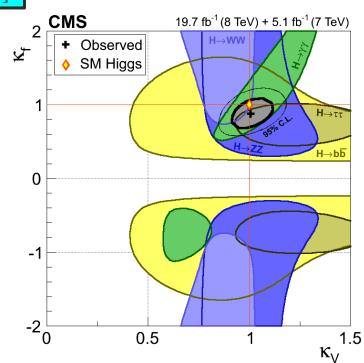
Jim Olsen - LHCC Open Session

Recent Physics Highlights

Higgs Combination

- Five main decay channels all published
- Combination submitted Dec 30
- All results consistent with SM Higgs

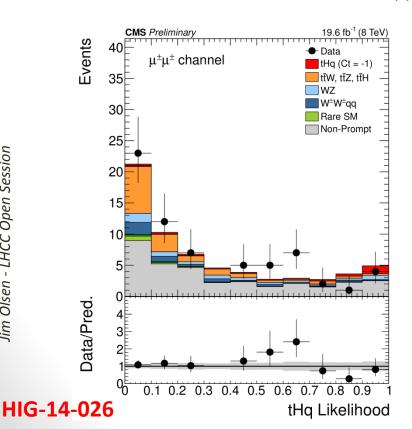

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig14009PaperTwiki

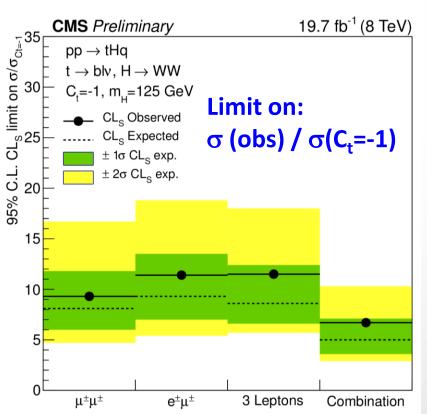

$$m_{\rm H} = 125.02^{\,+0.26}_{\,-0.27} \, ({\rm stat.}) \, {}^{\,+0.14}_{\,-0.15} \, ({\rm syst.}) \, {\rm GeV}$$

$$\mu = 1.00^{+0.14}_{-0.13} [\pm 0.09 \text{ (stat.)} ^{+0.08}_{-0.07} \text{ (theo.)} \pm 0.07 \text{ (syst.)}]$$

Channel	Obs (σ)	Exp (σ)
$H \rightarrow ZZ$	6.5	6.3
$H \rightarrow \gamma \gamma$	5.6	5.3
$H \rightarrow WW$	4.7	5.4
H o au au	3.8	3.9
$H \rightarrow bb$	2.0	2.6
$H \rightarrow \mu\mu$	< 0.1	0.4

First LHC Higgs mass combination coming soon!



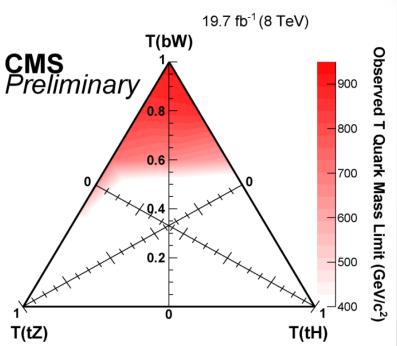


Jim Olsen - LHCC Open Session

Anomalous Higgs-top Coupling

- Large enhancement of tHq cross section expected if C_t = -1
 - N.B.: Additional non-SM particles in the loop can modify this prediction
- Added leptonic (WW+ $\tau\tau$) channels to existing searches for anomalous tHq production in $\gamma\gamma$ and bb final states
 - Combination of all channels ($\gamma\gamma$, bb, leptonic) in preparation

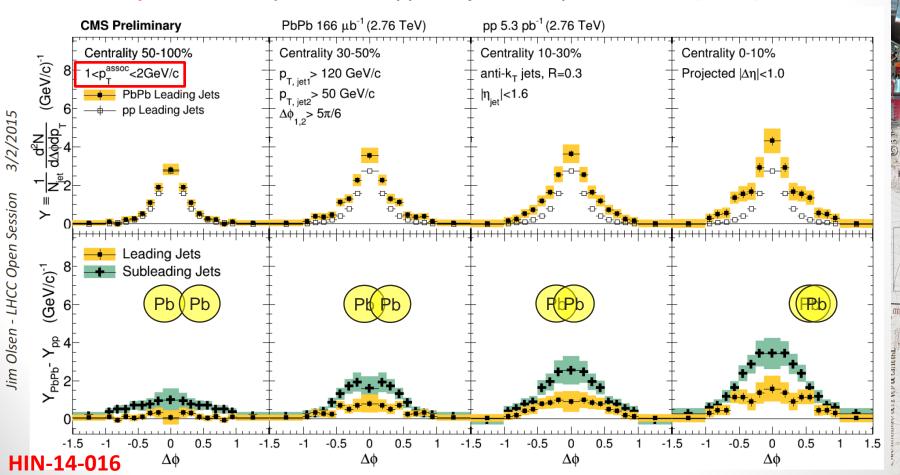
Jim Olsen - LHCC Open Session


Search for Vector-like Quarks

- 3rd (T) and 1st/2nd (Q) generation vector-like quarks are searched for in W+b/q decays in the lepton+jets channel (including merged jets)
- Two primary discriminating variables: mass, S_T

$$S_T = p_T^\ell + E_T^{miss} + p_T^{J_1} + p_T^{J_2} + p_T^{J_3} + p_T^{J_4}$$

Observed limits on T (Q) masses: 912 (788) GeV



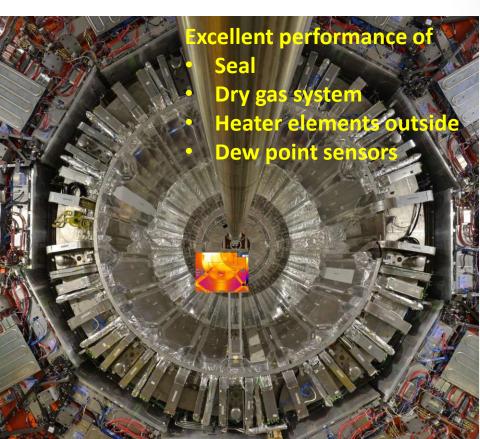
iet

lim Olsen - LHCC Open Session 3/2/2015

Jet-Track Correlations in PbPb

- Study of correlated charged-particle redistribution about the momentum axis of high- $p_{\scriptscriptstyle T}$ jets
- Extending existing studies to lower p_T and larger angles relative to the jet, well beyond the typical jet-size parameter ($^{\sim}0.3$)

Toward Run 2: Status of detector commissioning



Jim Olsen - LHCC Open Session

Tracker – Strips

- Calibration of strips at T = -15°C completed
- All goals of LS1 met
 - All old and new systems fully functional
 - New additional dry air plant to come this month
- Nothing substantial planned for LS2

Happily taking cosmics, first alignment efforts OK

Tracker - Pixel

- Barrel Pixel problems fully solved
 - Lessons learned for Phase I
- Pixel detector installed before Christmas
 - Shimming → detector now centered 0:0
 - Very dry environment
 - Including 8 modules with Phase I components
 - Pilot Blade
- 99.2% of the detector is alive: better than during Run I (96.3%)
- Pixel calibration at T = -10°C completed

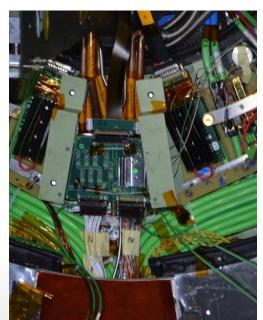
Happily taking cosmics, first alignment efforts OK

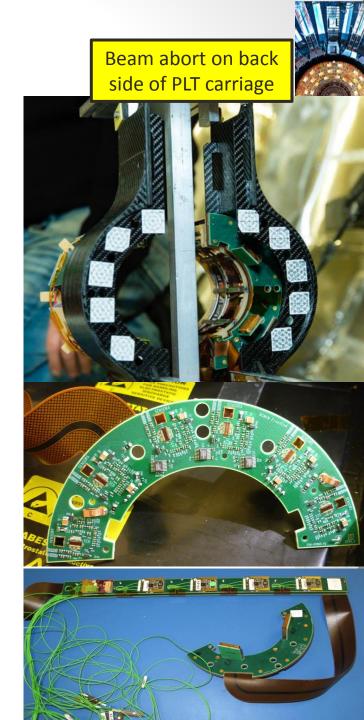
Pixel Luminosity Telescope

Si-PLT: Successful installation into CMS pixel service tube

- √ 16/16 PLT telescopes (8 telescopes per end)
- ✓ 48/48 PLT sensors
- √ Target is 1% Statistical error/Bunch/s
- ✓ Coincidence fast-OR of 3-plane telescopes.
- ✓ Online and Offline luminometer
- Pressure testing of all cooling lines
- Survey completed on both ends
- Tracker volume now closed and commissioning continuing
- Innovative use of Titanium 3D Printed integrated cooling/support structure

PLT IP side of carriage




Beam Monitoring

Beam Condition Monitor installed, mounted on the PLT carriage

- √ 48/48 BCM1F channels
- ✓ 8/8 BCML channels
- ✓ Numerous FOS temperature sensors on detector
- ✓ Innovative use of a flexible + rigid PCB to handle the dense number of signal paths
- ✓ 1000V operation avoiding the use of connectors in this sensitive very forward location

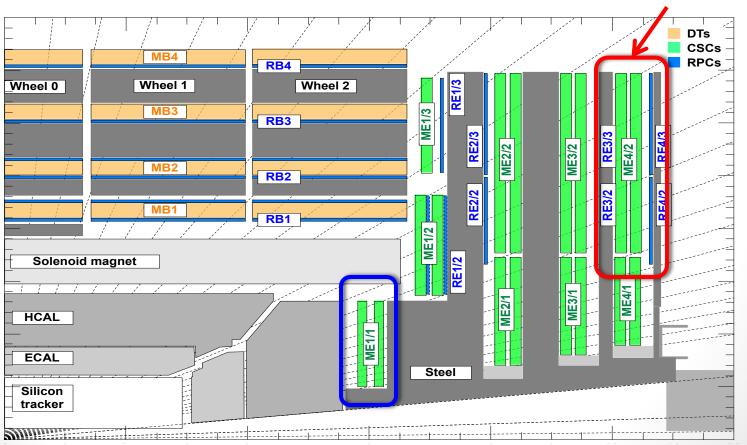
Calorimeters - ECAL

Trigger / DAQ

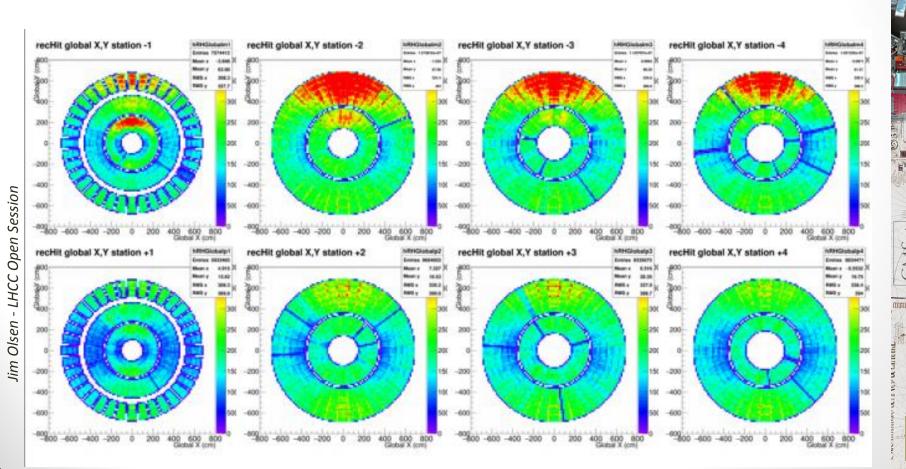
- All parts of ECAL (Barrel, Endcap, Preshower) participating in cosmic runs
- Recommissioning of trigger primitives ongoing

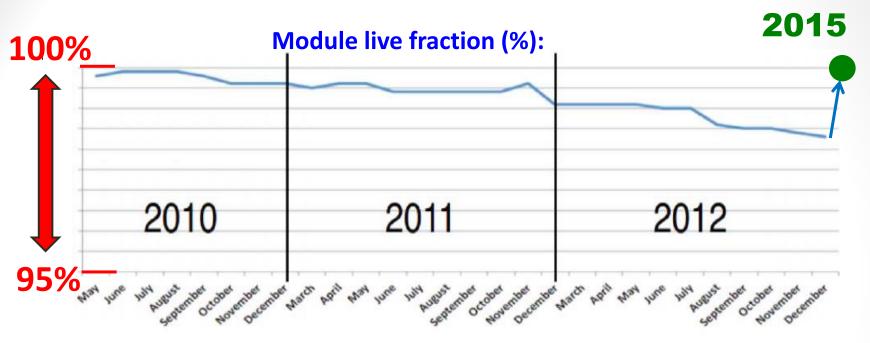
Infrastructure

- Successfully tested cold operation of the Preshower; will operate at -8°C during Run 2
- Detector reconstruction and calibration
 - New ECAL local reconstruction algorithm with better outof-time pileup (OOTP) rejection finalised for Run 2, both in offline and in HLT
 - Calibration strategy for 2015 defined, algorithms being retuned for 13 TeV/ 25ns operation


Calorimeters - HCAL

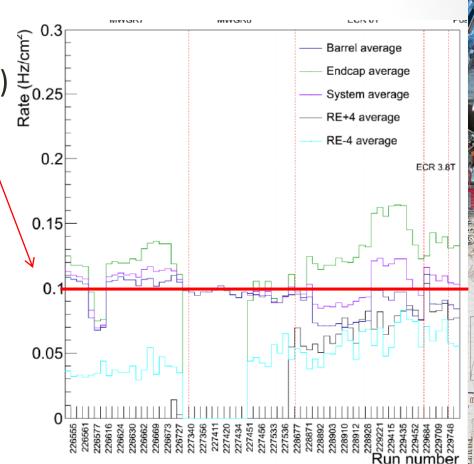
- Much improved system after LS1
 - Field-insensitive, high-performing SiPMs on entire HO
 - Multi-anode, thin-window PMTs in HF
 - Reduction in anomalous signals
 - New back-end electronics for HF installed
 - Pilot project for Phase-1 upgrade
- Detector reconstruction and calibration
 - Developed new HCAL local reconstruction algorithm with better OOTP rejection
 - New or improved calibration methods available for all HCAL detectors, in particular
 - HO (new SiPMs) calibration performed with cosmics
 - HF (new PMTs) calibration using wire-source


Muon System in LS1


- CMS Muon System has three sub-systems: Drift Tubes (DT),
 Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)
- Removal, revision, re-installation of ME1/1 chambers
- 4th muon station added: 72 (144) new CSC (RPC) chambers

Muons - CSCs in Cosmic Run

- LS1 upgrades: $468 \rightarrow 540$ CSC chambers
- Much better percentage of channels giving good data
 - \sim 99.5% versus Run 1 (was 99 \rightarrow 97% steady degradation)



- Minor (~1.5%) degradation in live fraction corrected
- Improved accessibility to electronics during the run:
 - installed 3500 optical links, 20 new crates, for relocating part of the electronics out of the experimental cavern

RPCs in Cosmic Runs

Fully commissioned

- Very low noise (0.1 Hz/cm²)
 and current (< 2μA per
 chamber)
- Efficiency studies with cosmics showing results compatible with 2010 running (avg eff ~95%)

DAQ Readiness

New DAQ

- Acquire data from "legacy" and new back-end electronics
- New equipment (PC, 40/56 Gbps networking, Lustre storage)
- Operational, with performance at least as good as in Run 1

Trigger

- New High Level Trigger (HLT) nodes delivered
- Will provide CPU budget of ~300 ms/event @ 100kHz
- New Trigger Control and Distribution System now operational

To complete before Run 2 physics:

- Install and commission full system (HLT and network)
- Fixes, as well as functional and performance enhancements
- Commission DAQ for luminosity detectors

Trigger Status

- L1/HLT menus for 1.4 x 10³⁴ Hz/cm² @ 25 ns ready
 - Most challenging conditions: ~double energy, lumi, pileup (~40)
 - Acceptance similar to that of 2012
 - Optimized treatment of OOTP for ECAL (HCAL coming)
 - Total rate fits in budget of 1.35kHz peak for 1kHz average offline rate
- First version of L1/HLT menus for 7 x 10³³ Hz/cm² (25ns)
 - More relaxed requirements at both L1 and HLT: lower thresholds and/or prescales; cpu/rate studies ongoing
 - First version of 5x10³³ Hz/cm² (50ns) L1 menu available, HLT coming
- Commissioning activities
 - Successful operation of the HLT during cosmic running
 - Regularly providing HLT menus for global CMS operation, individual sub-detectors (MiniDAQ), DAQ tests
 - Improvement ongoing for online DQM, as well as L1 and HLT rate monitoring

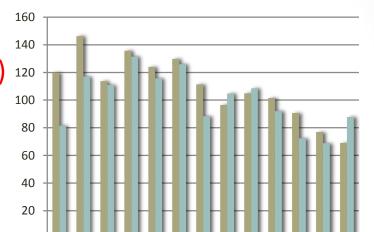


Run Coordination

- Done: extensive campaign to commission new hardware, including 9 Mid-Week Global Runs + Extended Cosmic Run/Magnet Test
 - Deployed new data acquisition system
 - Deployed/exercised new Trigger Control/Distribution System
 - Re-established legacy trigger and timing after signal splitting
 - Incorporated/commissioned new subsystem items
- In progress: collecting cosmic rays to align detector at B=0T and B=3.8T (400 hrs = 170M muon triggers each)
 - Feb-March: Cosmic RUn at ZEro Tesla (CRUZET)
 - Mid-March: Cosmic Run At ~Four Tesla (CRAFT)
- First beams: preparing commissioning plan to deliver physics quality data to CMS physicists as soon as possible upon startup
 - Beam commissioning: focus on timing
 - 1st collisions: refine timing, HV scans, alignment, van der Meer scans, ...

Example Cosmic Ray: Jan 30, 2015

Extensive use of cosmic rays to commission CMS in LS1


Toward Run 2: Computing, software, physics readiness

Jim Olsen - LHCC Open Session

Computing/Offline in LS1

- CMS resource utilization was high for most of LS1; general drop at start of 2015 (development period)
- Changes in Computing in LS1:
 - Additional Flexibility in the way resources are accessed
 - Improved Performance on the way resources are used
 - Optimized Access to data

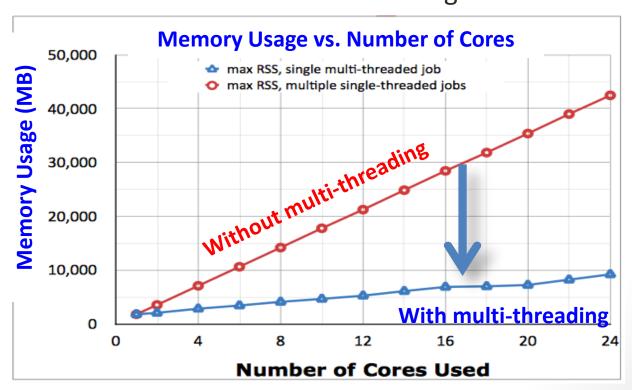
CMS Resource Utilization

Sep-14

Oct-14

Nov-14

- Instrumental for these changes has been the adoption of:
 - Logical separation between the Disk and Tape storage systems
 - Dynamic Data Placement
 - Improved Distributed Analysis Tool (CRAB3)



■ Tier-1

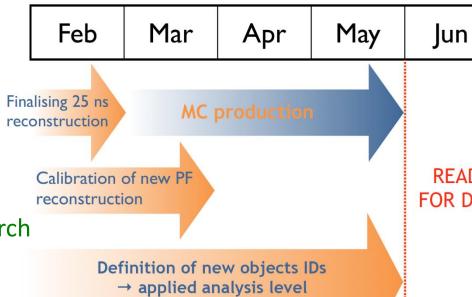
■ Tier-2

Computing/Offline for Run 2

- Next-generation framework based on multi-threading approach
 - Processing higher Run 2 trigger rates efficiently; lower memory usage
- Developed "miniAOD" data format ~10 times smaller than what was used in Run 1: target ~80-90% of users
- Achieved needed technical improvements in simulation, including move to GEANT 4.10 for use in multi-threading framework

Preparing for Run 2 MC Production

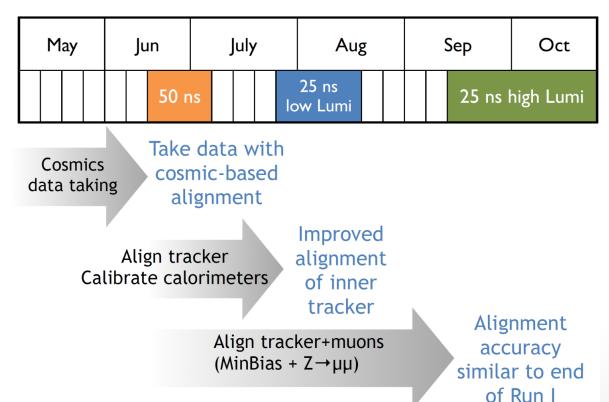
- Generation and simulation
 - Overall budget of ~1B events for startup needs (reco'd twice; 50/25ns)
 - PYTHIA8 samples already produced (~1/3 of overall budget)
 - Validation of LO and NLO generators using 8 TeV data
- Reconstruction, calibration and plans


Recalibration of Particle Flow algorithms for new PU-resilient calorimeter

local reconstruction

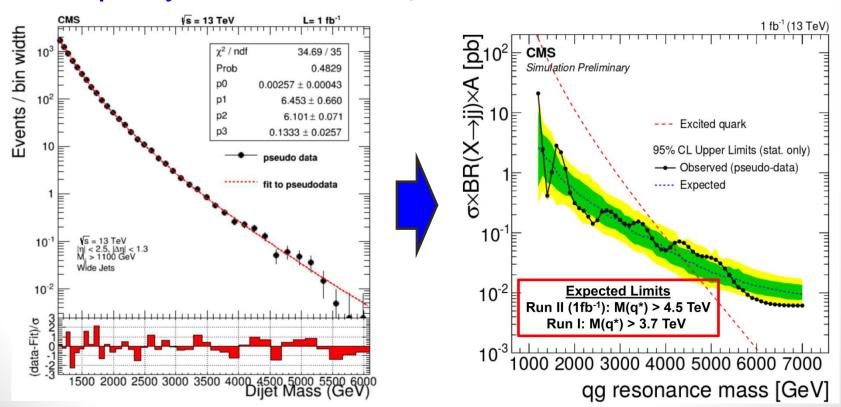
Realistic set of alignment and calibration conditions for MC production being validated (next slide)

Target date for production


@ 50 and 25ns is end of March

READY FOR DATA

Detector Alignment & Calibration


- Detailed planning for detector alignment, calibration, and data reprocessing well underway
 - Alignment obtained from cosmic ray data for start of 50ns run
 - Alignment obtained from first collision data for start of 25ns run
 - Achieve "end-of-Run1" alignment precision for high-lumi 25ns running

Physics Preparation for Run 2

- PHYS14 exercise ongoing since November
 - Targeting early Run 2 analyses: SM (b, onia, top, W, Z), Exotic and SUSY searches, and Higgs "rediscovery"
 - Recycled GEN-SIM (~300M events) reco'd with near-but-not-final reconstruction algorithms, and first version of 7x10³³ Hz/cm² menu

Example: dijet resonance search @ 13 TeV with 1 fb⁻¹

Jim Olsen - LHCC Open Session

Heavy Ion Preparations for Run 2

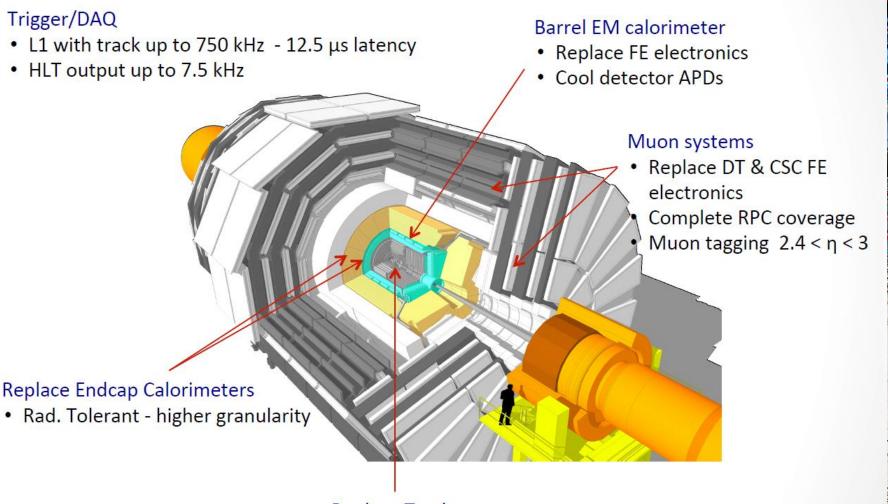
- The 2015 Ion Period will be the first high luminosity Pb run in the LHC Ion program
 - Peak Lumi: 3.7 x 10²⁷ cm⁻²s⁻¹, interaction rate ~30kHz
 - 8 times higher than the 2011 PbPb interaction rate, and 4 times higher than the LHC design value!
- Physics emphasis of the CMS HI Group for Run 2: Exploiting the high p_T reach of the high luminosity Ion LHC
 - Z⁰-jet, photon-jet correlations
 - TeV-scale jet quenching
 - Differential studies of pathlength/system-size/flavor dependence
 - photon-jet correlations vs photon pT, centrality, event plane
 - b jets, charmonium, and bottomonium production
 - High Integrated luminosity is essential; 5 TeV pp reference data needed adjacent in time (or coincident) with the PbPb sample

CMS HI Beam Request for Run 2

- Beam energy for PbPb running
 - Default 5.1 TeV (i.e. 6.5 ZTeV)
 - 5.02 TeV preferable if achievable without loss of running time
- For the PbPb run we expect ~1 nb⁻¹ delivered
 - Requires optimization of the fill length to account for rapid ion burnoff
 - Long fills (8h) + lumi leveling (ATLAS/CMS) give only ~0.6 nb⁻¹ / experiment
 - Short fills (\sim 3-5h) give the expected \sim 1 nb⁻¹ for CMS (and ATLAS)
 - CMS strongly favors the short-fill scheme, i.e. ~60% more luminosity
- 5 TeV pp reference data are essential
 - Should be recorded in 2015, preferably before the Ion run period, or, if necessary, during Ion run
 - Integrated luminosity matching the PbPb data set is needed
 - ~40 pb⁻¹ pp luminosity corresponds to 1 nb⁻¹ of PbPb data
 - No limitation on event pileup

Summary

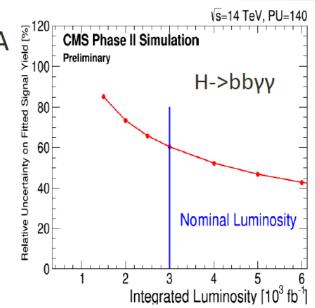
- LS1 has been a fruitful harvest for Run 1 physics results
 - Pushing to publish bulk of remaining analyses by summer
- Extensive programme of detector and infrastructure maintenance, consolidation, repair and upgrade scheduled for LS1 has completed successfully
 - Thanks to the hard work of CMS teams, contractors, CERN technical depts and PH Dept technical groups!
- Computing and software algorithms updated for Run 2
 - New event reconstruction mitigates effect of 25ns pile-up
- Proton and Heavy Ion Physics preparation in full swing
 - Expect to have MC samples with final reconstruction available before the start of Run 2
- In parallel, work continues on the CMS detector upgrade for the High-Luminosity LHC

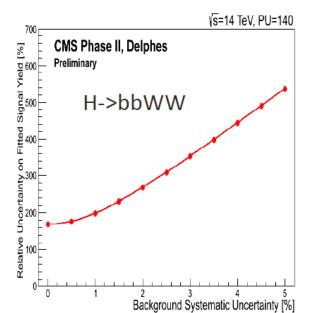


Backup Slides

Phase 2 Upgrades: The detector

Replace Tracker


- High granularity less material- better p_⊤ resolution
- Selective readout of outer tracker at 40 MHz for L1 trigger
- Extend n coverage to 4


Phase 2 Upgrades: Physics highlights

Variety of physics results presented at ECFA Higgs pair-production studies (cross-section

40.2 fb at \sqrt{s} =14 TeV)

- Parameterized object performance tuned to CMS Phase II detector at <PU>=140
- bbyy channel:
 - 320 events produced at 3000fb⁻¹, relatively clean
 - 2D fit of Mbb and Mγγ distributions
- bbWW channel:
 - 30000 events produced at 3000 fb⁻¹, large backgrounds
 - Neural Network discriminant to suppress tt background
- bbbb and bbττ final states also under consideration

