Layout update in IR1/5

G. Arduini, R. De Maria, M. Fitterer, M. Giovannozzi

Thanks to S. Fartoukh, P. Fessia, C. Garion, C. Magnier, H. Prin, E. Todesco, B. Vasquez De Prada

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404

Introduction and outline

- Layout changes
- Optics changes
- Aperture
- Next activities
- Summary

Layout: V1.1 -> V1.2 in IR1 and IR5

Changes	by
Triplet gradient reduction. New length, position; D1 position changed by 2.35 m towards the arc.	WP3, WP15
TAXS moved towards the IP by 0.33 m (better integration)	WP2, WP8, WP15
D1/D2 integrated strength from 33.4 Tm to 35 Tm (reduced CC voltage) resulting in TAXN-D2-CRAB rigid shift (0.18 m towards the arc)	WP2
no D2/Q4 mask, more space between TCTs/TCLs	WP10, WP15
MCBRD - MCBYY length (1.5 m -> 1.8 m) for larger integrated strength	WP3, WP2, WP15
D2, Q4 and Q5 orbit corrector orientations	WP2, WP15
Q4-Q5 position re-optimized (reduced CC voltage)	WP2
Minor changes of all interconnection lengths	WP15

Changes implemented in optics files. TODO:

- BPM position to be iterated with Blanca
- TCL. 6 (maybe even the TCTs) to be iterated with Collimation team
- Renamed TCT. 5 in TCT. 6 (S. Chemli)
- Wire space reservation (WP2)

Optics V1.1 -> V1.2

- Increase pre-squeeze $\beta^{*} 44 \mathrm{~cm}$-> 48 cm (due to lower triplet gradient)
- Increased peak β at constant β^{*} by 5\% (due to lower triplet gradient)
- Typical ATS squeeze, injection, VDM updated
- Provided alignment optics for BPM calibration
- Offset knobs $\pm 2 \mathrm{~mm}$ introduced due to recent requests from Experiments
- Lumi scan knobs in the shadow of this knob with ~100 $\mu \mathrm{m}$ range
- TODO:
- $\beta_{x, y}$ in Q4 tunability range
- IR8 ATS with $\beta^{*}<3 \mathrm{~m}$ and IP longitudinal shift for LHCb new requests
- IR4 optics optimization for instrumentation and e-lens (received only generic optics specifications)
- IR6 optics optimization (no feedback yet LBDS constraints)
- Include D1/D2 transfer function correction if powered in series (not likely to happen)
- Exotic optics: no ATS (no IP phase constraint), ATS2 (suboptimal arc matching) to increase Q4 $\beta_{x, y}$ tunability range at the cost of chromatic correction and/or arc

Squeezed optics

- β^{*} pre-squeeze: 44 cm -> 48 cm
- Crab cavity: 12 MV needed for 590 urad
- New squeeze transitions needed for flat optics to have $\beta^{*}=40 \mathrm{~cm}$ in the crossing plane.
- Optics provided:

β^{*}	15 cm	$7.5 \mathrm{~cm} / 30 \mathrm{~cm}$	20 cm	$10 \mathrm{~cm} / 40 \mathrm{~cm}$
Crossing angle	$\pm 295 \mu \mathrm{rad}$	$\pm 245 \mu \mathrm{rad}$	$\pm 255 \mu \mathrm{rad}$	$\pm 210 \mu \mathrm{rad}$
Separation	12.5σ	14.5σ	12.5σ	14.5σ
	$\pm 2 \mathrm{~mm}$	$\pm 0.75 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	$\pm 0.75 \mathrm{~mm}$

Aperture margins

1. Layout and optics define nominal orbit and beam sizes.
2. Geometry of the vacuum system (e.g. beam screens inner dimensions with tolerances).
3. Operational tolerances on beam size are added to the actual beam size.
4. Alignment and fiducialization tolerances are subtracted from available aperture.
5. The difference in units of beam sigma is calculated and compared with the aperture protected by the collimation systems

Aperture triplet region

Triplet beam screen's, Č. Garion
Octagonal beam screens for triplets/D1 with tungsten shielding have been designed.

Expected straightness: 0.5 mm
Shape tolerance: $\pm 1 \mathrm{~mm}$ (C. Garion 12/06/2015), to be confirmed by the prototype.

The possibility of reducing the tungsten layer thanks to alternating crossing planes (F. Cerutti, S.

Element	H or V gap $[\mathrm{mm}]$	45° gap $[\mathrm{mm}]$
Q1	$102-1.5$	$102-1.5$
Q2-Q3-CP	$122-1.5$	$114-1.5$
D1	$122-1.5$	$114-1.5$

Aperture D2-Q4-Q5

New D2-Q4 octagonal beam screens have been designed, no tolerances given, yet.

Q5 beam screens (RectEllipse) oriented for collision optics aperture optimizations.
Same triplet tolerances removed from the mechanical dimensions.

Element	H or V gap $[\mathrm{mm}]$	45° gap $[\mathrm{mm}]$
MBRD	$87.0-1.5$	$78.0-1.5$
MQYY	$78.5-1.5$	$63.8-1.5$
Q5	$57.8,48.0$	

C. Garion, no tolerances included

Orbit corrector knobs

- IP crossing, separation, offset ($\mathbf{x}: \pm 295 \mu \mathrm{rad}, \mathbf{s}: \pm 0.75 \mathrm{~mm}, \mathbf{o}: \pm 2.0 \mathrm{~mm}$)
- beam based alignment of crab cavities: ccp, ccm (shift): $\pm 0.5 \mathrm{~mm}$, ccs (slope): $\pm 0.25 \mathrm{~mm}$
- IT alignment and transfer function errors (err): $\pm 0.5 \mathrm{~mm}$ transverse, $\pm 10 \mathrm{~mm}$ longitudinal, $\pm 2 \times 10^{-3}$ relative gradient error, $\pm 2 \times 10^{-3} \mathrm{D} 2$ relative field error.
- orbit correction from the arc (to confirmed): arc 0.7 Tm ;
- lumi scan knobs (single beam IP shift for $100 \mu \mathrm{~m}$)

	x-scheme [Tm]			cc alignment [Tm]			err [Tm]	arc [Tm]	lumi [Tm]		nma	[Tm]
name	x	S	0	ccp	ccm	CCS	err	arc	lumi	tot	max	margin [\%]
MCBX1	0.14	0.11	1.16	0.19	0	0	0.92	0	0	2.42	2.5	3.30
MCBX2	0.07	0.05	0.79	0.19	0	0	1.40	0	0	2.17	2.5	1.53
MCBX3	2.11	0.2	\bigcirc ด८	$\cap \triangle 5$	$\bigcirc 15$	\bigcirc	$\bigcirc 78$	n		443	4.5	1.45
MCBRD4	2.97	0.09	- St	udying para	$\begin{aligned} & \text { g re-s } \\ & \text { ion sc } \end{aligned}$	aring narios	rces with	ew cross	ng and	;	4.5	-2.89
MCBYY4	1.49	0.04			/YY	gth in	rease 1.6	-> 1.8 m	needed	4	4.5	-5.39
MCBY5	0	0	1.35	0.40	0.40	0.35	0	0	0	2.46	2.7	8.9
MCBY5	0	0	0	0	0	0	0	0.7	0	0.7	2.7	26
MCBC6	0	0	0.46	0	0	0	0	0.7	0	0.46	2.8	83.4
MCBC7	0	0	1.40	0	0	0	0	0.7	0	1.40	2.8	50

Beam tolerances and collimation protection

Beam tolerances have been redefined by:

- Taking into account LHC Run I successful experience
- Adding safety margins based on possible unknowns.

For collimation:

- magnet protected by TCT: $\geq 12 \boldsymbol{\sigma}$
- magnet not protect by TCT: $18 \boldsymbol{\sigma}^{(2)}$ or possibly less, pending dedicated studies (R. Bruce) .

Beam Tolerance	LHC DR Inj./Coll.	HL-LHC Inj./Coll.
Emittance $[\mu \mathrm{m}]$ (normalization only)	$3.75 / 3.75$	$3.5 / 3.5$
β-beating [\%]	$20 / 20$	$10 / 20$
Orbit error [mm]	$4 / 3$	$4 / 2$
Spurious Disp. [\%]	$27.3 / 27.3$	$14 / 10$
$\Delta \mathrm{p} / \mathrm{p}\left[10^{-4}\right.$]	$15 / 8.6$	$6 / 2$
Target aperture [б]	$8.4 / 8.4$	$\mathbf{9}^{(1)} / \mathbf{1 2}$ $\left(\mathbf{1 8}^{(2)}\right)$
R. Bruce et al., CERN-ACC-2014-0044		

Minimum aperture not protected by TCT in collision and aperture targets at injection should be confirmed by WP5 ${ }^{(2)}$ and WP14 ${ }^{(1)}$.

Aperture vs optics for baseline

TAXS

Round

Flat

TAXS aperture needs to be increased to 60 mm

Q1

Round

Flat

Q1 OK

Round

Flat

Q2 not OK, but options to improve it available

TAXN

Round

IR1/5 $\beta^{*}=20 \mathrm{~cm}, \pm 255 \mu$ rad: TAXN.4L, $a_{\min }=13.91 \sigma$

R1/J $=20 \mathrm{~cm}, \pm 255 \mu$ rad: TAXN.4R, $a_{\min }=13.77 \sigma$

Flat

IR1/5 $\beta^{*}=40,10 \mathrm{~cm}, \pm 210 \mu \mathrm{rad}:$ TAXN. $4 \mathrm{R}, a_{\text {min }}=11.41 \sigma$

Aperture to be increased: 80 mm to 85 mm

Aperture includes worst case scenarios for all knobs:

Q4 options

 IP crossing, separation, offset, crab cavity offset (assuming linear addition).| | Coil
 aperture | Beam
 aperture | H,V² full
 gaps | Round
 15 cm | Round
 20 cm | Flat
 7.5 cm | Flat
 10 cm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $[\mathrm{~mm}]$ | | $[\mathrm{mm}]$ | $[\sigma]$ | $[\sigma]$ | $[\sigma]$ | $[\sigma]$ |
| MCBYY | 90 | Octagon | $73.8,73.8$ | 15.4 | 17.9 | 13.4 | 15.5 |
| MQYY | 90 | Octagon | $73.8,73.8$ | 16.3 | 18.9 | 13.9 | 16.1 |
| MCBYY | 80 | Octagon | $63.8,63.8$ | 11.6 | 13.5 | 10.1 | 11.7 |
| MQYY | 80 | Octagon | $63.8,63.8$ | 12.3 | 14.2 | 10.5 | 12.1 |
| MCBY | 70 | RectEllipse | $57.8,48$ | 11.8 | 13.7 | 8.4 | 9.8 |
| MQY | 70 | RectEllipse | $57.8,48$ | 13 | 15.1 | 9.2 | 10.6 |

- We exclude the option MQY for robust flat optics operations.
- MQYY at 80 mm is not sufficient to provide enough flexibility:
- Any improvement in triplet aperture would be useless if Q4 aperture is degraded.
- If Q4 needs to be pushed towards D2 more aperture is needed (about 0.7σ).
- In case of operation at 6.5 TeV .
- The use of a Rectellipse beam screen can help recovering aperture, but only in specific cases: freezing optics constraints or crossing plane.

Impact of energy deposition needs to be re-evaluated in case of reduction of coil

Q4: MQY with 70 mm coils

Round

$\operatorname{IR} 1 / 5 \beta^{*}=20 \mathrm{~cm}, \pm 255 \mu \mathrm{rad}: \mathrm{MCBYY} . .4 \mathrm{~L}, a_{\text {min }}=13.70 \sigma$

Flat
IR1/5 $\beta^{*}=40,10 \mathrm{~cm}, \pm 210 \mu \mathrm{rad}:$ MCBYY.. $4 \mathrm{~L}, a_{\min }=9.76 \sigma$

Q4 with MQY not ok

Q4: MQYY with 80 mm coils

Round
IR1/5 $\beta^{*}=20 \mathrm{~cm}, \pm 255 \mu \mathrm{rad}:$ MCBYY.. $4 \mathrm{~L}, a_{\min }=13.45 \sigma$

, + , + ,

Flat
IR1/5 $\beta^{*}=40,10 \mathrm{~cm}, \pm 210 \mu \mathrm{rad}:$ MCBYY..4L, $a_{\min }=11.70 \sigma$

MQYY with 80mm coil not OK. RectEllipse option can help only for special cases.

MG - HL-LHC TC Meeting

Q4: MQYY with 90 mm coils

Round

IR1/5 $\beta^{*}=20 \mathrm{~cm}, \pm 255 \mu \mathrm{rad}:$ MCBYY.. $4 \mathrm{~L}, a_{\min }=17.88 \sigma$

Flat

IR1/5 $\beta^{*}=40,10 \mathrm{~cm}, \pm 210 \mu$ rad: MCBYY..4L, $a_{\min }=15.55 \sigma$

Q4 with MQYY: OK

Aperture includes worst case scenarios for all knobs:

Q5 options

IP crossing, separation, offset, crab cavity offset (assuming linear addition).		Coil aperture	Beam aperture	H,V2full gaps	Round 15 cm	Round 20 cm	Flat 7.5 cm	Flat 10 cm
	$[\mathrm{~mm}]$		$[\mathrm{mm}]$	$[\sigma]$	$[\sigma]$	$[\sigma]$	$[\sigma]$	
TCLMB.5	70	RectEllipse	$57.8,48$	20.6	23.9	15.0	17.8	
MCBY[HV].5	70	RectEllipse	$57.8,48$	21.4	24.7	15.3	18.4	
MQY.5	70	RectEllipse	$57.8,48$	21.2	24.6	15.0	17.6	
TCLMB.5	56	RectEllipse	$45.1,35.3$	14.0	16.2	10.0	11.6	
MCBC[HV].5	56	RectEllipse	$45.1,35.3$	13.8	16.0	10.1	11.7	
MQML.5	56	RectEllipse	$45.1,35.3$	14.4	16.6	10.3	11.9	

The RectEllipse shapes are oriented in opposite way w.r.t the LHC for both MQY and MQML options.

- The choice of a new MQYY option for Q4 allows to re-use the MQY for Q5 including, which provides the two additional orbit correctors that are needed in Q5.
- The MQY aperture is also needed for the present alignment optics at injection (not shown in the table).
- The MQY aperture may avoid the need of a TCT protecting Q5.

MQYY for Q5 in Q7+ optics

An additional Q7 and $2 \times M Q Y Y$ in Q5 per side allow a substantial reduction of crab cavity voltage.

Without the additional Q7, it is difficult to make use of the large aperture margin provided by a MQYY in Q5. This option is therefore dropped.

Next activities

Layout re-validation (Q4-Q5 position)	WP15, WP2
Wire space reservation	WP2
Review energy deposition	Survey, WP3, WP8
Confirm ground motion and fiducialization assumptions	WP8
Validation minimum protected aperture (collimation, injection, dump)	WP5, WP14
Validation aperture TAXS and TAXN with Experiments	WP12
Beam screen tolerances	WP14
Validation of dump (IR6), injection (IR2, IR8) optics constraints	All requestors
Specification of optics constraints for IR4	WP2/OP
Validation requirements orbit correction from the arc	

Summary

- New layout and optics increased β^{*} value for the squeeze and pre-squeeze optics.
- Critical revision of aperture, taking into account all constraints learnt from Run I experience.
- Orbit correctors margins re-evaluated taking into account all known requests: additional strength needed (increased magnetic length). In addition, revision of the strength sharing on-going.
- Q4 aperture: option of re-using MQY excluded. The current baseline is kept (90 mm), pending evaluation of benefits (magnet side) of slight aperture reduction (e.g., down to 85 mm).
- Q5 aperture: critical review of aperture indicates the benefits of re-using the MQY (present Q4). This choice provides naturally also the needed two additional orbit correctors.

Back-up

Offset knob - 2mm

Orbit corrector knobs - 1.5 m , 3 T

- IP crossing, separation, offset ($\mathbf{x}: \pm 295 \mu \mathrm{rad}, \mathbf{s}: \pm 2.0 \mathrm{~mm}, \mathbf{0}: \pm 2.0 \mathrm{~mm}$)
- beam based alignment of crab cavities: ccp, ccm (shift): $\pm 0.5 \mathrm{~mm}$, ccs (slope): $\pm 0.25 \mathrm{~mm}$
- IT alignment and transfer function errors (err): $\pm 0.5 \mathrm{~mm}$ transverse, $\pm 10 \mathrm{~mm}$ longitudinal, $\pm 2 \times 10^{-3}$ relative gradient error, $\pm 2 \times 10^{-3}$ D2 relative field error.
- orbit correction from the arc (to confirmed): arc 0.7 Tm ;
- lumi scan knobs (single beam IP shift for $100 \mu \mathrm{~m}$)

	x-scheme [Tm]			cc alignment [Tm]			err [Tm]	arc [Tm]	lumi [Tm]		mma	[Tm]
name	x	S	0	ccp	ccm	CCS	err	arc	lumi	tot	max	margin [\%]
MCBX1	0.14	0.29	1.22	0.19	0	0	0.92	0	0	2.63	2.5	-5.2
MCBX2	0.07	0.14	0.55	0.19	0	0	1.4	0	0	2.54	2.5	-1.42
MCBX3	2.11	0.54	0.94	0.45	0.15	0	0.78	0	0	4.43	4.5	1.45
MCBRD4	2.97	0.24	0	0.28	0.15	0.52	0.08	0.35	0.27	4.53	4.5	-0.63
MCBYY4	1.49	0.12	1.12	0.42	0.42	0.92	0	0.35	0.2	4.81	4.5	-6.98
MCBYS5	0	0	1.35	0.4	0.4	0.44	0	0	0	2.46	2.7	8.9
MCBY5	0	0	0.47	0	0	0	0	0	0	0.47	2.8	83.31
MCBC6	0	0	1.4	0	0	0	0	0	0	1.4	2.8	50
MCBC7	0.14	0.29	1.22	0.19	0	0	0.92	0	0	2.63	2.5	-5.2

Orbit corrector knobs - 1.8 m

- IP crossing, separation, offset ($\mathbf{x}: \pm 295 \mu \mathrm{rad}, \mathbf{~ s : ~} \pm 0.75 \mathrm{~mm}, \mathbf{0}: \pm 2.0 \mathrm{~mm}$)
- beam based alignment of crab cavities: ccp, ccm (shift): $\pm 0.5 \mathrm{~mm}$, ccs (slope): $\pm 0.25 \mathrm{~mm}$
- IT alignment and transfer function errors (err): $\pm 0.5 \mathrm{~mm}$ transverse, $\pm 10 \mathrm{~mm}$ longitudinal, $\pm 2 \times 10^{-3}$ relative gradient error, $\pm 2 \times 10^{-3}$ D2 relative field error.
- orbit correction from the arc (to confirmed): arc 0.7 Tm;
- lumi scan knobs (single beam IP shift for $100 \mu \mathrm{~m}$)

	x-scheme [Tm]			cc alignment [Tm]			err [Tm]		arc [Tm]	Iumi [Tm]		mary	Tm]
name	x	S	0	ccp	ccm	CCS	err		arc	lumi	tot	max	margin [\%]
MCBX1	0.19	0.28	0.88	0.19	0	0	0.92		0	0	2.27	2.5	9.04
MCBX2	0.09	0.14	0.14	0.19	0	0	1.4		0	0	1.9	2.5	24.06
MCBX3	2.29	0.54	0.41	0.45	0.15	0	0.78		0	0	4.08	4.5	9.37
MCBRD4	3.55	0.28	0	0.28	0.15	0.52	0.08		0	0.27	4.76	5.4	11.91
MCBYY4	1.07	0.08	2.1	0.42	0.42	0.92	0		0.7	0.2	4.96	5.4	8.24
MCBYS5	0	0	1.23	0.4	0.4	0.44	0		0	0	2.34	2.7	13.51
MCBY5	0	0	0.0	0	0	0	0		0.7	0	1.26	2.8	83.31
MCBC6	0	0	1.26	0	0	0		0	0	0	1.26	2.8	55.17
MCBC7	0	0	1.4	0	0	0		0	0	0	1.4	2.8	50

Effect of the knobs

	Coil aperture	Beam ${ }^{1}$ aperture	$\begin{aligned} & \mathrm{H}, \mathrm{~V} 2 \text { full } \\ & \text { gaps } \end{aligned}$	Sep. knob	Crossing Knob	Crab shift knob	Crab slope knob	Offset knob
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TAXS	54	Circle	54, 54	0.8	6.1	0.0	0.0	2.0
MQXFA.[AB]1	150	Octagon	102, 102	0.8	11.2	0.0	0.0	2.4
MQXFB.[AB]2	150	Octagon	122, 122	1.2	16.7	0.2	0.0	3.6
MQXFA.[AB]3	150	Octagon	122, 122	0.8	16.6	0.4	0.0	2.8
MBXF	150	Octagon	122, 122	0.5	15.5	0.5	0.0	2.4
TAXN	n/a	Circle	80, 80	0.2	5.5	0.9	0.0	3.0
MBRD	105	Octagon	87, 87	0.1	3.3	1.0	0.0	3.3
MCBRD	105	Octagon	87, 87	0.1	1.7	1.0	0.1	3.4
MCBYY	90	Octagon	73.8,73.8	0.0	0.1	1.0	0.5	4.0
MQYY	90	Octagon	73.8,73.8	0.0	0.0	1.0	0.5	3.9
TCLMB. 5		RectEllipse	57.8, 48	0.0	0.0	0.4	0.2	3.7
MCBY[HV]. 5	70	RectEllipse	57.8, 48	0.0	0.0	0.0	0.0	3.6
MQY. 5	70	RectEllipse	57.8, 48	0.0	0.0	0.2	0.1	3.5
TCLMC. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.3
MCBC[HV]. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.1
MQML. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.1

${ }^{1}$ Either Beam screen or beam pipe;
${ }^{2}$ Rectellipse types are exchanges the H, V orientation depending on the polarity

Effect of the knobs -1.8 m

	Coil aperture	Beam aperture	$\begin{aligned} & \text { H,V2full } \\ & \text { gaps } \end{aligned}$	Sep. knob	Crossing Knob	Crab shift knob	Crab slope knob	Offset knob
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TAXS	54	Circle	54, 54	0.8	6.1	0.0	0.0	2.0
MQXFA.[AB]1	150	Octagon	102, 102	0.8	11.2	0.0	0.0	2.5
MQXFB.[AB]2	150	Octagon	122, 122	1.2	16.7	0.2	0.0	3.4
MQXFA.[AB]3	150	Octagon	122, 122	0.8	16.6	0.4	0.0	2.6
MBXF	150	Octagon	122, 122	0.5	15.5	0.5	0.0	1.7
TAXN	n/a	Circle	80, 80	0.2	5.5	0.9	0.0	3.1
MBRD	105	Octagon	87, 87	0.1	3.3	1.0	0.0	3.4
MCBRD	105	Octagon	87, 87	0.1	1.7	1.0	0.1	3.7
MCBYY	90	Octagon	73.8,73.8	0.0	0.1	1.0	0.5	4.3
MQYY	90	Octagon	73.8,73.8	0.0	0.0	1.0	0.5	4.2
TCLMB. 5		RectEllipse	57.8, 48	0.0	0.0	0.3	0.1	3.7
MCBY[HV]. 5	70	RectEllipse	57.8, 48	0.0	0.0	0.0	0.0	3.6
MQY. 5	70	RectEllipse	57.8, 48	0.0	0.0	0.1	0.1	3.5
TCLMC. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.3
MCBC[HV]. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.1
MQML. 6	56	RectEllipse	45.1,35.3	0.0	0.0	0.0	0.0	2.1

${ }^{1}$ Either Beam screen or beam pipe;
${ }^{2}$ Rectellipse types are exchanges the H, V orientation depending on the polarity

Alignment optics

Optics to align BPMs in the triplet at injection.

Compatible with injection strength, but aperture not exceptional in the arcs.

