Observation of ground motion in the LHC at the triplet

Acknowledgments: K. Artoos, R. Bruce, R. De Maria, M. Giovannozzi, M. Guinchard, L. Lacny, S. Redaelli, R. Tomas&OMC team, J. Wenninger
Outline

1. Idea
 a) Measurement of IT eigenfrequencies
 b) Change of beta during squeeze

2. DOROS BPMS and ADT

3. Measurements and results

4. Summary
Idea

• closed orbit distortion is proportional to maximum beta function in IT

\[x_{co}(s) = \frac{\sqrt{\beta(s)}}{2 \sin \pi \nu} \int_s^{s+C} d\bar{s} \Delta x(\bar{s}) kl \sqrt{\beta(\bar{s})} \cos(\pi \nu + \psi(s) - \psi(\bar{s})) \]

due to ground motion

• beta function increases mainly in the IT during the squeeze
 ⇒ change in amplitude of the orbit spectrum can be almost certainly related to a movement of the IT
 ⇒ record beam spectrum during the squeeze with the ADT and the DOROS BPMs

• amplification of the ground motion by up to factor 100 by the mechanical structure of the IT = IT eigen-frequencies (see M. Guinchard, 16th HL-LHC PLC, Vibration analysis TT41 TAG41, \textit{indico})
 ⇒ are the IT eigen-frequencies visible in the beam spectrum?
Measurements of IT eigen-frequencies

M. Guinchard, 16th HL-LHC PLC, Vibration analysis TT41 TAG41, indico

Coupling from first horizontal mode around 10Hz

First vertical mode around 23 Hz

First horizontal mode around 10 Hz

\Rightarrow amplification of up to factor 100 by IT, amplitude seen by the beam scales with $1/f$
Change of beta during squeeze

\[x_{co}(s) = \frac{\sqrt{\beta(s)}}{2 \sin \pi \nu} \int_{s}^{s+C} \Delta x(s) kl \sqrt{\beta(s)} \cos (\pi \nu + \psi(s) - \psi(s)) \]

⇒ amplitude of beam spectrum scales with \(\sqrt{\beta_{IT}} \cdot (kl)_{IT} \)

Changes during the squeeze

<table>
<thead>
<tr>
<th>optics</th>
<th>(\beta^*) [cm]</th>
<th>kl [1/m]</th>
<th>max((\beta_{IT})) [m]</th>
<th>sqrt((\beta_{IT})) \cdot (kl)_{IT} (optics/injection)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>injection (6.5 TeV)</td>
<td>1100</td>
<td>0.047</td>
<td>0.055</td>
<td>242</td>
</tr>
<tr>
<td>collision (6.5 TeV)</td>
<td>80</td>
<td>0.048</td>
<td>0.056</td>
<td>3028</td>
</tr>
<tr>
<td>collision (6.5 TeV)</td>
<td>40</td>
<td>0.048</td>
<td>0.056</td>
<td>6053</td>
</tr>
</tbody>
</table>
DOROS BPMs and ADT

DOROS BPMs:
• installed in IR1 and IR5 in front of Q1 (not all frontends available during the different measurement)
• orbit for spectra calculation is scaled by $1/\sqrt{\beta_{BPM}}$ in order to obtain only the amplification during the squeeze due to the misalignment of the IT ($\sqrt{\beta_{IT}}(k_l)_{IT}$)
• no synchronized measurement of Beam 1 and Beam 2 possible (yet)
• commissioned for nominal bunches, noisy results eventually for pilot bunches

ADT:
• 2 pickups per beam and plane installed in IR4 at Q7L,Q7R,Q9L,Q9R
• orbit for spectra calculation is scaled by $1/\sqrt{\beta_{ADT}}$
• no change of beta-function in IR4 during squeeze
• no synchronized measurement of Beam 1 and Beam 2 possible
Measurements

1) Beta*-reach: IR aperture measurement at small beta (MD307), fill 4037, 23.07.2015 20:58 – 24.07.2015 01:09:
 • 12 pilot bunches per beam
 • ADT on and orbit feedback off
 • ADT used for loss maps

2) Beta* reach: optics commissioning (MD384), fill 4033, 22.07.2015 08:43 – 14:22:
 • 1 pilot bunch per beam
 • ADT off and orbit feedback off
 • excitation by AC dipole

3) physics fill 3974, 07.07.2015 21:04 – 08.07.2015 05:52:
 • 152 nominal bunches
 • ADT on and orbit feedback off

4) physics fill 3986, 11.07.2015 20:12 – 22:30: (only ADT data)
 • 296 nominal bunches
 • ADT on and orbit feedback off
Comparison of averaged spectra, MD307

visible at 11 m and 40 cm (6.5 TeV):
- line at 4.5 Hz v-plane???
- 50 Hz line
- 2Qs just below 50 Hz line

only at 40 cm (6.5 TeV):
- “bump” around 12 Hz in h-plane
- “bump” around 20 Hz in v-plane

⇒ match first horizontal and vertical IT eigen-frequency
Comparison of averaged spectra, MD384

At 11 m (6.5 TeV):
- line at 4.5 Hz v-plane
- 50 Hz line
- 2Qs just below 50 Hz line
- “bump” around 12 Hz in h-plane

At 40 cm (6.5 TeV):
- “bump” around 12 Hz in h-plane
- “bump” around 20 Hz in v-plane
- Match first horizontal and vertical IT eigen-frequency

Data averaged over 10 samples, FFT with 131072 turns

(no DOROS data available for 11m)
3.5 TeV, 8 MV → $f_s = 22.9$ Hz

compatible with Q_s and $2Q_s$, $f_s = 22.9$ Hz

$B2V, \beta^* = 2.0$ m

2010 data
17 May 2010
damper off
low bunch intensity
FFT of 4 bunches
(65536 turns)

3.5 TeV, 8 MV → $f_s = 22.9$ Hz

W. Hofle, D. Valuch @LBOC 21.08.2012
Scaling with β^* (ADT), MD384

- same frequencies visible for 80 cm, 50 cm and 40 cm
- no obvious scaling of FFT amplitude with β^*, might lie in the noise of the measurement?

![Graph showing scaling with β^*](image)
Comparison of averaged spectra, 07/07/15

- only very short time at 11 m
 - orbit could be disturbed as just after the ramp, instability?
 - two “bumps” around 20Hz and 40 Hz?
 - 50 Hz line
 - 2Qs just below 50 Hz line
 - “bump” around 12 Hz in h-plane

at 40 cm (6.5 TeV):
- “bump” around 12 Hz in h-plane
- “bump” around 20 Hz in v-plane
⇒ match first horizontal and vertical IT eigen-frequency
Averaged Spectra ADT, 11/07/15

at 11 m and 80 cm (6.5 TeV):
- peak at 4.5 Hz v-plane??
- 50 Hz line
- Qs+2Qs just below 50 Hz line
- “bump” around 12 Hz

at 40 cm (6.5 TeV):
- “bump” around 12 Hz in h-plane
- “bump” around 20 Hz in v-plane
⇒ match first horizontal and vertical IT eigen-frequency

(no DOROS data available for 11m)
Summary

1. similar spectra obtained with ADT and DOROS BPMs at high \(\beta^* \) (11m) and even better agreement at low \(\beta^* \) (40 cm)
2. “20 Hz bump” visible in the vertical plane at low \(\beta^* \) (40, 50, 80 cm) while it is not visible at high \(\beta^* \) (11m)
 \[\Rightarrow \text{first vertical IT eigen-frequency} \]
3. DOROS: “10 Hz bump” visible in the horizontal plane at low \(\beta^* \) (40, 80 cm), but not visible at high \(\beta^* \) (11m)
 ADT: “10 Hz bump” visible at high and low \(\beta^* \)
 \[\Rightarrow \text{first horizontal IT eigen-frequency?} \]
4. 4.5 Hz peak?
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
MD307, 12 pilot bunches

DOROS: horizontal – IR5, left, Beam 1

\[\beta_{\text{IR5}} = 1100.0 \text{ cm, 2015-07-23 23:09:09} \]

Units on y-axis are \(\mu \sqrt{\text{m}} \)
MD307, 12 pilot bunches

ADT: horizontal – Q7, right, Beam 2

\[\beta_{IP1} = 1100.00 \text{ cm, 2015-07-23 23:15:47} \]

![Graph 1](image1)

- Q7R b2h, scale=0.07

![Graph 2](image2)

- Q7R b2h, scale=0.07
MD307, 12 pilot bunches

DOROS: vertical – IR5, right, Beam 2

$\beta_{IR5} = 1100.0 \text{ cm, 2015-07-23 23:08:58}$

units on y-axis are $\mu \times \sqrt{\text{m}}$
MD307, 12 pilot bunches

ADT: vertical – Q7, right, Beam 1

\[\beta_{\text{IP1}} = 1099.00 \text{ cm, 2015-07-23 23:31:02} \]

- Upper graph: horizontal displacement vs. number of turns
- Lower graph: amplitude vs. frequency (log-log scale)

- Line: Q7R b1v, scale=0.09