Status of 2HDM and C2HDM after run1

Rui Santos

24 February 2015

Higgs Cross Section Working Group

WG3: Extended Scalars

CP-conserving and explicit CP-violating (softly broken Z₂ symmetric)

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.}]$$

- m_{12}^2 and λ_5 real, vacuum configuration (CP-conserving)

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}; \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

- 7 free parameters + M_W : m_h , m_H , m_A , m_{H^\pm} , $\tan\beta$, α , $M^2 = \frac{m_{12}^2}{\sin\beta\cos\beta}$
 - m_{12}^2 and λ_5 complex, vacuum configuration (explicit CP-violating)

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}; \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$
I. Ginzburg, M. Krawczyk and P. Osland, hep-ph/0211371.

8 free parameters + Mw: $m_1,\,m_2,\,m_3,\,m_{H^\pm},\, aneta,\,lpha_{1,2,3},\,Re(m_{12}^2)$

Lightest Higgs couplings

$$\alpha_1 = \alpha + \pi / 2$$

to gauge bosons

$$g_{2HDM}^{hVV} = \sin(\beta - \alpha) g_{SM}^{hVV}$$
 $V = W, Z$ CP-conserving

$$V = W, Z$$

$$g_{C2HDM}^{hVV} = C g_{SM}^{hVV} = (c_{\beta}R_{11} + s_{\beta}R_{12}) g_{SM}^{hVV} = \cos(\alpha_2)\cos(\beta - \alpha_1) g_{SM}^{hVV}$$

CP-VIOLATING

$$g_{C2HDM}^{hVV} = \cos(\alpha_2) g_{2HDM}^{hVV}$$

$$C \equiv c_{\beta}R_{11} + s_{\beta}R_{12}$$

$$|s_2| = 0 \implies h_1$$
 is a pure scalar,
 $|s_2| = 1 \implies h_1$ is a pure pseudoscalar

$$R = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 s_3 \end{pmatrix}$$

Lightest Higgs couplings

Yukawa couplings

$$Y_{C2HDM} \equiv c_2 Y_{2HDM} \pm i \gamma_5 s_2 \begin{cases} t_{\beta} \\ 1/t_{\beta} \end{cases}$$

$$R = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 s_3 \end{pmatrix}$$

$$R = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 s_3 \end{pmatrix}$$

	Type I	Type II	Lepton	Flipped
			Specific	
Up	$\frac{c_{\alpha}}{s_{\beta}}$	$\frac{c_{lpha}}{s_{eta}}$	$\frac{c_{lpha}}{s_{eta}}$	$\frac{c_{\alpha}}{s_{\beta}}$
Down	$\frac{c_{lpha}}{s_{eta}}$	$-rac{s_{lpha}}{c_{eta}}$	$\frac{c_{lpha}}{s_{eta}}$	$-rac{s_{lpha}}{c_{eta}}$
Leptons	$\frac{c_{lpha}}{s_{eta}}$	$rac{c_{lpha}}{s_{eta}}$	$-rac{s_{lpha}}{c_{eta}}$	$\frac{c_{lpha}}{s_{eta}}$

$$\alpha_1 = \alpha + \pi / 2$$

CP-VIOLATING

	Type I	Type II	Lepton	Flipped
			Specific	
Up	$\frac{R_{12}}{s_{\beta}} - ic_{\beta} \frac{R_{13}}{s_{\beta}} \gamma_5$			
Down	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}} \gamma_5$	$rac{R_{11}}{c_{eta}}-is_{eta}rac{R_{13}}{c_{eta}}\gamma_{5}$	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}} \gamma_5$	$rac{R_{11}}{c_{eta}}-is_{eta}rac{R_{13}}{c_{eta}}\gamma_{5}$
Leptons	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}} \gamma_5$	$rac{R_{11}}{c_{eta}} - i s_{eta} rac{R_{13}}{c_{eta}} \gamma_5$	$rac{R_{11}}{c_{eta}}-is_{eta}rac{R_{13}}{c_{eta}}\gamma_{5}$	$\frac{R_{12}}{s_{eta}} + ic_{eta} \frac{R_{13}}{s_{eta}} \gamma_5$

Free parameters

Parameter	2HDM	C2HDM	_
masses	m_h,m_H,m_A,m_{H^\pm}	$m_{h_1}, m_{h_2}, m_{H^\pm}$	
v_2/v_1	aneta	aneta	
angles (neutral)	lpha	$\alpha_1, \alpha_2, \alpha_3$	$\alpha_1 = \alpha + \pi / 2$
soft breaking	m_{12}^2	$Re(m_{12}^{2})$	

- Set $m_h/m_{h1} = 125 \, GeV$.
- Generate random values for the parameters subject to
 - Pre-LHC constraints
 - Theoretical bounds
 - LHC (Tevatron and LEP) results via HiggsBounds and HiggsSignals

(Scan "R" Us)

- Tool to Scan parameter space of Scalar sectors. Coimbra, Sampaio, RS, (2013).
- **Automatise** scans for tree level renormalisable V_{scalar} .
- Generic routines, flexible user analysis & interfaces.

interfaced with

Higlu SPIRA (1995).

SuShi - Higgs production at NNLO in gg and bb Harlander, Liebler, Mantler, (2013).

HDECAY - Higgs decays DJOUADI, KALINOWSKI, SPIRA (1997) + MÜHLLEITNER (2013).

Superiso - Some of the flavour physics observables MAHMOUDI (2007).

HiggsBounds - Limits from Higgs searches at LEP, Tevatron and LHC

HiggsSignals - Signal rates at the Tevatron and LHC

BECHTLE, BREIN, HEINEMEYER, STÅL, STEFANIAK, WEIGLEIN, WILLIAMS (2010-2015)

and ScannerS has the remaining constraints/cross sections

 Global minimum, perturbative unitarity, potential bounded from below, electroweak precision and some alternative sources for B-physics constraints.

http://www.hepforge.org/archive/scanners/ScannerSmanual-1.0.2.pdf

Results after run 1 for the CP-conserving case

The SM-like limit (alignment)

all tree-level couplings to fermions and massive gauge bosons are the SM ones.

$$\kappa_{i} = \frac{g_{2HDM}}{g_{SM}}$$
at tree-level
$$\kappa_{i}^{2} = \frac{\Gamma^{2HDM} (h \rightarrow i)}{\Gamma^{SM} (h \rightarrow i)}$$

$$\sin(\beta - \alpha) = 1 \implies \kappa_F = 1; \quad \kappa_V = 1$$

Wrong-sign limit

$$\kappa_D \kappa_V < 0 \quad \text{or} \quad \kappa_U \kappa_V < 0$$

GINZBURG, KRAWCZYK, OSLAND 2001

FERREIRA, GUNION, HABER, RS 2014

FERREIRA, GUEDES, SAMPAIO, RS 2014

$$\sin(\beta + \alpha) = 1 \implies \kappa_D = -1 \quad (\kappa_U = 1)$$

$$\sin(\beta - \alpha) = \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \implies \kappa_V \ge 0 \quad \text{if} \quad \tan \beta \ge 1$$

Shape comes primarily from μ_{VV}

Assuming that the cross section is gluon fusion via top and $\Gamma_T \approx \Gamma (h \rightarrow b\overline{b})$

Results after run 1 for C2HDM

tanß as a function of $sin(\alpha_1 - \pi/2)$ for Type I and Type II. Full range (cyan), $s_2 < 0.1$ (blue) and $s_2 < 0.05$ (red).

The future at the LHC

Left: sgn(C) b_D (or b_L) as a function of sgn(C) a_D (or a_L) for Type II, 13 TeV, with rates at 10% (blue), 5% (red) and 1% (cyan) of the SM prediction.

Right: same but for up-type quarks.

Heaviest CP-even scalar as the SM-like Higgs

The SM-like limit

$$\cos(\beta - \alpha) = 1 \implies$$

$$\Rightarrow \kappa_F = 1; \ \kappa_V = 1$$

The reasons for the exclusion can be easily rephrased in terms of $\tan \beta$ and $\cos(\beta-\alpha)$.

Wrong-sign limit

$$\kappa_D \kappa_V < 0$$

However $\mu_{\gamma\gamma}$ is always below 0.95.

The SM-like limit could be probed due to the non-decoupling nature of this scenario.

Two scenarios that could be probed at run2 with high luminosity

For the 2HDM - Accuracy in h-> YY

5% would exclude the <u>wrong sign in both scenarios</u> <u>but also</u> the heavy scenario <u>in the SM-like limit</u> due to the effect of charged Higgs loops + theoretical and experimental constraints. In fact, the <u>heavy scenario</u> is <u>completely excluded</u> with a 5 % accuracy in h -> $\gamma\gamma$.

Scenarios that could be probed at run2 with high luminosity

For the C2HDM

 To probe all four versions of the model we need three independent measurements

$$\tan \phi_i = \frac{b_i}{a_i}; \qquad i = U, D, L$$

Ratio of pseudoscalar to scalar components in Yukawa couplings.

• Just one measurement for type I (U=D=L), two for the other three types. At the moment there are studies for tth and $\tau\tau h$. We also need bbh.

BERGE, BERNREUTHER, ZIETHE 2008
BERGE, BERNREUTHER, NIEPELT, SPIESBERGER, 2011
BERGE, BERNREUTHER, KIRCHNER 2014

Dolan, Harris, Jankowski, Spannowsky, 2014

BOUDJEMA, GODBOLE, GUADAGNOLI, MOHAN, 2015

Direct probing at the LHC

Left: $\cos \alpha_1$ as a function of Φ_D for Type II, 13 TeV, with all rates at 10% (blue); $|a_D| < 0.1 ||b_D| - 1| < 0.1$ (green); $|b_D| < 0.05 ||a_D| - 1| < 0.05$ (red).

Right: same with $tan\beta$ replaced by sgn(C) a_D .

SM-like limit (alignment) vs Decoupling

The decoupling limit of 2HDM

$$M_{12}^2 \to \infty$$
, $\cos(\alpha - \beta) \to 0$

• In this limit, the masses of $\Phi=H, H^{\pm}, A$:

$$m_{\Phi}^2 = M_{12}^2 + \sum_i \lambda_i v^2 + \mathcal{O}(v^4/M_{12}^2), \quad , \quad m_h^2 = \sum_i \lambda_i v^2$$

• When $M_{12}^2 \gg \lambda_i v^2$, $m_{H,A,H\pm}^2$ are determined by M_{12}^2 , and are independent of λ_i . In this case $\alpha \to \beta - \pi/2$, The effective theory below M_{12} is described by one Higgs doublet. In this limit:

$$h^{0}VV/(h_{SM}VV) = \sin(\beta - \alpha) \to 1$$

$$h^{0}b\bar{b}/h_{SM}b\bar{b} = -\frac{\sin\alpha}{\cos\beta} \to 1 , (h^{0}\bar{t}t)/h_{SM}t\bar{t} = \frac{\cos\alpha}{\sin\beta} \to 1$$

$$H^{0}VV \propto \cos(\beta - \alpha) \to 0 , (hhh)/(hhh)_{SM} \to 1$$

$$h^{0}H^{+}H^{-}, h^{0}A^{0}A^{0}, h^{0}H^{0}H^{0}, H^{\pm}t\bar{b}... \neq 0$$

GUNION, HABER (2003)

Heavy scenario and boundness from below

$$g_{HH^+H^-}^{SM-like} \approx -\frac{2m_{H^\pm}^2 - m_H^2 - 2M^2}{v^2}$$

$$g_{HH^+H^-}^{Wrong \ Sign} \approx -\frac{2m_{H^{\pm}}^2 - m_H^2}{v^2}$$

Boundness from below

$$M < \sqrt{m_H^2 + m_h^2 / \tan^2 \beta}$$

$$b \rightarrow s \gamma$$

$$m_{H^{\pm}}^2 > 340 \text{ GeV}$$

Parametrisation (8)

W. Khater and P. Osland, Nucl. Phys. B 661, 209 (2003).

 \rightarrow 2 charged, H[±], and 3 neutral, h₁, h₂ and h₃ 3 masses

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \qquad R \mathcal{M}^2 R^T = \operatorname{diag} \left(m_1^2, m_2^2, m_3^2 \right)$$

$$R = \begin{pmatrix} c_1c_2 & s_1c_2 & s_2 \\ -(c_1s_2s_3 + s_1c_3) & c_1c_3 - s_1s_2s_3 & c_2s_3 \\ -c_1s_2c_3 + s_1s_3 & -(c_1s_3 + s_1s_2c_3) & c_2c_3 \end{pmatrix}$$
 3 angles

- $ightharpoonup \operatorname{Re}[m_{12}^2]$ real part of the soft breaking term
- \rightarrow tan β ratio of vacuum expectation values

$$m_3^2 = \frac{m_1^2 R_{13} (R_{12} \tan \beta - R_{11}) + m_2^2 R_{23} (R_{22} \tan \beta - R_{21})}{R_{33} (R_{31} - R_{32} \tan \beta)}$$

• There are 3 neutral scalars. The CP nature of h_1 is determined by s_2

$$|s_2| = 0 \implies h_1$$
 is a pure scalar,
 $|s_2| = 1 \implies h_1$ is a pure pseudoscalar

$$g_{CPV} = g_{CPC} = g_{SM} \cos(\beta - \alpha_1)$$

but we can still have CP-violation (the two heavier scalars can mix).

However if

$$\alpha_2 = 0; \ \beta - \alpha_1 = 0$$
 $R_{11} = c_{\beta}; \ R_{12} = s_{\beta}; \ R_{13} = 0$

that is, the h₁WW vertex is the SM one

$$g_{CPV} = g_{SM} \cos(\alpha_2) \cos(\beta - \alpha_1) = g_{SM}$$

the model is CP-conserving.

Scan 2HDM

- Set $m_h = 125.9 \, GeV$
- Generate random values for potential's parameters such that

$$50 \text{ GeV} \le m_{H^+} \le 1 \text{ TeV}$$

$$0.5 \le \tan \beta \le 50$$

$$m_h + 5 \text{ GeV} \le m_A, m_H \le 1 \text{ TeV}$$

$$-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

$$-900^2 \text{ GeV}^2 \le m_{12}^2 \le 900^2 \text{ GeV}^2$$

- Impose theoretical and pre-LHC experimental constraints
- Calculate all branching ratios and production rates at the LHC
- Use collider constraints via HiggsBounds and HiggsSignals

Scan C2HDM

- Set $m_{h1} = 125 \, GeV$.
- · Generate random values for potential's parameters such that,

$$-\pi/2 < \alpha_{1,2,3} \le \pi/2$$
 $100 \,\text{GeV} \le m_{H^{\pm}} \le 900 \,\text{GeV}$ $1 \le \tan \beta \le 30$ $m_{H^{\pm}} \gtrsim 340 \,\text{GeV}$ $m_1 \le m_2 \le 900 \,\text{GeV}$ $-(900 \,\text{GeV})^2 \le Re[m_{12}^2] \le (900 \,\text{GeV})^2$

- Impose pre-LHC experimental constraints,
- Impose theoretical constraints: perturbative unitarity, potential bounded from below.

Predictions:

Same as before except no HiggsBounds and HiggsSignals:

Calculate all branching ratios and production rates at the LHC

$$\mu_{XX} = \frac{\sigma^{2HDM} (pp \to h) \times BR^{2HDM} (h \to XX)}{\sigma^{SM} (pp \to h) \times BR^{SM} (h \to XX)}$$

• Ask for $\mu_{\scriptscriptstyle WW}$, $\mu_{\scriptscriptstyle ZZ}$, $\mu_{\scriptscriptstyle \gamma\gamma}$, $\mu_{\scriptscriptstyle \tau\tau}$

to be within 5, 10 and 20 % of the SM predictions (at 13 TeV)

Sum over all production cross sections

The zero scalar scenarios

• There is only one way to make the pseudoscalar component to vanish

$$R_{13} = 0 \implies s_2 = 0$$

and they all vanish (for all types and all fermions).

• There are two ways of making the scalar component to vanish

$$R_{11}=0 \implies c_1c_2=0 \qquad \qquad c_2=0 \implies g_{h1VV}=0 \qquad \text{excluded}$$

$$c_1=0 \quad \text{allowed}$$

$$R_{12}=0 \quad \Rightarrow \quad s_1c_2=0$$

excluded

	Type I	Type II	Lepton	Flipped
			Specific	
$U_{\mathbf{p}}$	$\frac{R_{12}}{s_{\beta}} - ic_{\beta} \frac{R_{13}}{s_{\beta}}$			
Down	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}}$	$rac{R_{11}}{c_{eta}}-is_{eta}rac{R_{13}}{c_{eta}}$	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}}$	$rac{R_{11}}{c_{eta}}-is_{eta}rac{R_{13}}{c_{eta}}$
Leptons	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}}$	$rac{R_{11}}{c_{eta}} - i s_{eta} rac{R_{13}}{c_{eta}}$	$rac{R_{11}}{c_eta} - i s_eta rac{R_{13}}{c_eta}$	$\frac{R_{12}}{s_{\beta}} + ic_{\beta} \frac{R_{13}}{s_{\beta}}$

EDMs

Plot from: Brod, Haisch, Zupan, JHEP 1311 (2013) 180.

See also

INOUE, RAMSEY-MUSOLF, ZHANG, 2014

CHEUNG, LEE, SENAHA, TSENG, 2014