Electroweak corrections

Stefan Dittmaier

Albert-Ludwigs-Universität Freiburg

Stefan Dittmaier, Electroweak corrections

Relevance of EW corrections @ LHC

- 2015: LHC run 2 @ 13-14 TeV starting
 - \hookrightarrow energy reach extends deeper into TeV range

```
\hookrightarrow \delta_{\rm EW} \sim \text{some } 10\%
```

• integrated LHC luminosity will reach some $100 \, {\rm fb}^{-1}$

 \hookrightarrow many measurements at several-% level

 \hookrightarrow typical size of $\delta_{\rm EW}$

• planned high-precision measurements: XS ratios, $M_{\rm W}$, $\sin^2 \theta_{\rm eff}^{\rm lept}$

 $\hookrightarrow \delta_{\rm EW}$ is crucial ingredient

Spirit of this talk

- describe salient features of EW corrections, in particular enhancement effects
- give brief survey of results for Higgs physics at the LHC, in particular emphasizing recent developments

Contents

Electroweak corrections

... general features

... to Higgs-boson decays

... to Higgs-boson production

Summary & outlook

Electroweak corrections

... general features

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 - 4

Features of and issues in EW precision calculations

Relevance and size of EW corrections generic size $O(\alpha) \sim O(\alpha_s^2)$ suggests NLO EW ~ NNLO QCD but systematic enhancements possible, e.g.

- by photon emission
 - \hookrightarrow kinematical effects, mass-singular log's $\propto \alpha \ln(m_{\mu}/Q)$ for bare muons, etc.

• at high energies

 \hookrightarrow EW Sudakov log's $\propto (\alpha/s_{\rm W}^2) \ln^2(M_{\rm W}/Q)$ and subleading log's

EW corrections to PDFs at hadron colliders

induced by factorization of collinear initial-state singularities, new: photon PDF

Instability of W and Z bosons

- realistic observables have to be defined via decay products (leptons, γ 's, jets)
- off-shell effects $\sim O(\Gamma/M) \sim O(\alpha)$ are part of the NLO EW corrections

Combining QCD and EW corrections in predictions

- how to merge results from different calculations
- reweighting procedures in MC's

Collinear final-state radiation (FSR) off leptons

Leading logarithmic effect is universal:

$$\sigma_{\rm LL,FSR} = \int \underbrace{\mathrm{d}\sigma^{\rm LO}(k_l)}_{\text{hard scattering}} \int_0^1 \mathrm{d}z \quad \underbrace{\Gamma^{\rm LL}_{\ell\ell}(z,Q^2)}_{\text{leading-log structure}} \Theta_{\rm cut}(zk_l)$$

function, Q = typ. scale

 k_{ℓ}

- $\Gamma_{\ell\ell}^{\text{LL}}(z,Q^2)$ known to $\mathcal{O}(\alpha^5)$ + soft exponentiation, equivalent description by QED parton showers
- $\mathcal{O}(\alpha)$ approximation: $\Gamma_{\ell\ell}^{\text{LL},1}(z,Q^2) = \frac{\alpha(0)}{2\pi} \left[\ln\left(\frac{Q^2}{m_{\ell}^2}\right) 1 \right] \left(\frac{1+z^2}{1-z}\right)_+$
- log-enhanced corrections for "bare" leptons (muons) \rightarrow large radiative tails
- KLN theorem: mass-singular FSR effects cancel if $(\ell \gamma)$ system is inclusive (full integration over z)
- full FSR not universal, in general not even separable from other EW corrections
- Recommendations for experimentalists:
 - no unfolding or subtraction of FSR effects !
 - $\,\hookrightarrow\,$ would introduce untransparent conventions for non-universal EW corrections
 - use concept of "dressed leptons" if reduction of large FSR effects is desirable (recombination of collinear $\ell\gamma$ configurations, analogous to QCD jet algorithms)

Electroweak radiative corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

$$i = \gamma, W, Z$$

$$k$$
etc.

+ sub-leading logarithms from collinear singularities

Typical impact on $2 \rightarrow 2$ reactions at $\sqrt{s} \sim 1 \,\mathrm{TeV}$:

$$\begin{split} \delta_{\rm LL}^{1-\rm loop} &\sim -\frac{\alpha}{\pi s_{\rm W}^2} \ln^2 \left(\frac{s}{M_{\rm W}^2}\right) &\simeq -26\%, \qquad \delta_{\rm NLL}^{1-\rm loop} \sim +\frac{3\alpha}{\pi s_{\rm W}^2} \ln \left(\frac{s}{M_{\rm W}^2}\right) &\simeq 16\%\\ \delta_{\rm LL}^{2-\rm loop} &\sim +\frac{\alpha^2}{2\pi^2 s_{\rm W}^4} \ln^4 \left(\frac{s}{M_{\rm W}^2}\right) \simeq 3.5\%, \qquad \delta_{\rm NLL}^{2-\rm loop} \sim -\frac{3\alpha^2}{\pi^2 s_{\rm W}^4} \ln^3 \left(\frac{s}{M_{\rm W}^2}\right) \simeq -4.2\% \end{split}$$

 \Rightarrow Corrections still relevant at 2-loop level

Note: differences to QED / QCD where Sudakov log's cancel

- massive gauge bosons W, Z can be reconstructed \hookrightarrow no need to add "real W, Z radiation"
- non-Abelian charges of $\mathrm{W},\,\mathrm{Z}$ are "open" $\,\to\,$ Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and suggested resummations via evolution equations Giafaloni, Comelli; Denner, Pozzorini; Fadin et al.; Hori et al.; Melles; Kühn et al., Denner et al. '00-'08

Electroweak radiative corrections at high energies (continued)

- NLO EW high-energy logs an approximation for full NLO EW ?
 - miss finite contributions of $\mathcal{O}(\alpha)$ and photonic radiation effects
 - + simple approximation in Sudakov regime:

 $s \text{ and } |t| \text{ large for } 2 \rightarrow 2 \quad \Rightarrow \text{ large } p_T \text{ or } M_T !$

- fail in non-Sudakov regime:

e.g. s large, but |t| NOT large for $2 \rightarrow 2 \Rightarrow$ e.g. large M_{ll} in Drell-Yan !

- + generically included in ALPGEN Chiesa, Montagna, Piccinini et al. '13
- Real W and Z emission processes
 - not fully separable from underlying process
 (e.g. hadronically decaying W/Z's in jet environment)
 - partially compensate negative virtual EW corrections
 - \hookrightarrow strongly dependent on W/Z reconstruction / separation

Recommendations:

- full NLO EW corrections whenever possible
- careful validations of logarithmic approximations against full results
- real W/Z emission: full ME calculations via multipurpose LO MC's

Electroweak effects in PDFs

Analogy to QCD-improved parton model:

Collinear splittings $q \rightarrow q\gamma$, $\gamma \rightarrow q\bar{q}$ lead to quark mass singularities

- absorption of $\alpha \ln m_q$ singularities via factorization into redefined PDFs
- $\mathcal{O}(\alpha)$ corrections to all PDFs

 \hookrightarrow typical impact: $\Delta(\text{PDF}) \lesssim 0.3\% (1\%)$ for $x \lesssim 0.1 (0.4)$, $\mu_{\text{fact}} \sim M_{\text{W}}$

- photon PDF
 - $\hookrightarrow\,$ typically add $\mathcal{O}(1\%)$ to cross sections, but with large uncertainties

NNPDF2.3QED = NNPDF set with $\mathcal{O}(\alpha)$ corrections

Ball et al. [NNPDF collaboration] '13

- currently best PDF prediction at (N)NLO QCD + NLO EW
- PDF samples for error estimate provided
- photon PDF fitted to DIS and Drell–Yan data ($10^{-5} \lesssim x \lesssim 10^{-1}$)

 \hookrightarrow better future constraints via $\gamma \gamma \rightarrow \mu^+ \mu^-, W^+ W^-$ for larger x ?

• but: (small) scheme ambiguity remains in $\mathcal{O}(\alpha)$

Electroweak corrections

... to Higgs-boson decays

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 - 10

NLO EW corrections to Higgs-boson decays

• $\mathbf{H} \to f\bar{f}$

Bardin, Vilenskii, Khristova '91 Dabelstein, Hollik '92; Kniehl '92

• $H \rightarrow \gamma \gamma$

full 2-loop result known (Actis,) Passarino, Sturm, Uccirati '07,'08

• $H \to gg$

full 2-loop result known (same calculation as for $gg \rightarrow H$) Actis, Passarino, Sturm, Uccirati '08

• $H \rightarrow WW/ZZ$

Higgs BR + Total Uncert

10⁻¹

10-2

 10^{-3}

_ ττ

CC

100

$\,\hookrightarrow\,$ NLO EW corrections known for most important SM Higgs decays

Hdecay + Prophecy4f

140

120

160

WW

WG

LHC HIGGS XS

180 200 M_H [GeV]

bb

Fakultat für Mathematik v Albert-Ludwigs Universit

Survey of Feynman diagrams for NLO corrections to ${\rm H}
ightarrow {\rm WW}/{\rm ZZ}
ightarrow 4f$

Lowest order:

Typical one-loop diagrams:

diagrams = $\mathcal{O}(200-400)$

+ tree graphs with real gluon or photons

Example: corrections to distribution in angle between Z decay planes

Boselli et al. '15

250

300

350

- 5-10% NLO effects distorting shapes
- genuine weak corrections $\sim 2-5\%$
- good agreement between *Prophecy4f* and *Hto4I* at NLO
- elmg. shower effects $\sim 0.5 1\%$
- PS approximation totally off

Electroweak corrections

... to Higgs-boson production

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 - 15

SM Higgs XS predictions for the LHC at $\sqrt{s} = 14 \, {\rm TeV}$ LHC Higgs XS WG 2010–

Rough numbers:

$M_{\rm H} = 125 {\rm GeV}$	Uncertainties		NLO/NNLO/NNLO+		
	scale	PDF4LHC	QCD	EW	
ggF	11%	7%	>100%	5%	_
VBF	1%	3%	5%	5%	EW corrections
WH	1%	4%	20%	7%	
ZH	4%	4%	35%	5%	
ttH	9%	9%	20%	1-2%	

Physikalisches Institut

Higgs production via gluon fusion

Stefan Dittmaier, Electroweak corrections

Corrections to Higgs-boson production via gluon fusion

- QCD corrections:
 - ◊ full NLO, NNLO via expansions

$$K = \frac{\sigma_{\rm NNLO}}{\sigma_{\rm LO}} \sim 2.0$$

 \diamond NNNLO in limit $m_{
m t}
ightarrow \infty$

resummations

• EW corrections

- \diamond complete NLO correction known $\sim \mathcal{O}(5\%)$
- \diamond mixed $\mathcal{O}(\alpha \alpha_{
 m s})$ corrections for small $M_{
 m H}$

Fakultat für M

Physikalisches Institut

Graudenz, Spira, Zerwas '93 Djouadi, Graudenz, Spira, Zerwas '95

Marzani et al. '08 Pak, Rogal, Steinhauser '09 Harlander, Ozeren '09

Chetyrkin et al. '98,'06; Moch/Vogt '05; Schröder/Steinhauser '06; Baikov et al. '09; Gehrmann et al. '10,'12; Duhr/Gehrmann '13; Li/Zhu '13; Kilgore '13; Hoeschele et al.'13; Buehler/Lazopoulos '13; Anastasiou et al. '13–'15

Catani et al. '03; Moch, Vogt '05 Laenen, Magnea '05; Idilbi, Ji, Ma, Yuan '05 Ravindran '05,'06; Ravindran, Smith, v.Neerven '06 Ahrens, Becher, Neubert, Yang '08,'11 Berger et al. '10; Stewart, Tackmann '11 Banfi, (Monni,) Salam, Zanderighi '12 Becher, Neubert '12

Aglietti, Bonciani, Degrassi, Vicini '04,'06 Degrassi, Maltoni '04 Actis, Passarino, Sturm, Uccirati '08

Anastasiou, Boughezal, Petriello '08

NLO EW corrections

6

4

 $\mathbf{2}$

0

-2

-4

 $\delta_{EW}[\%]$

Actis, Passarino, Sturm, Uccirati '08

Correction to partonic cross section:

EW corrections ...

- matter at the 5% accuracy level
- show non-trivial structures near WW, ZZ, $t\bar{t}$ thresholds
 - \rightarrow properly described via complex-mass scheme (real masses lead to unphysical peaks)

q \sim

g ∞

W

• mixed $\mathcal{O}(\alpha \alpha_s)$ corrections for small M_H Anastasiou, Boughezal, Petriello '08 suggest factorization of QCD and EW corrections within good accuracy

Η

etc.

Higgs production via vector-boson fusion

Stefan Dittmaier, Electroweak corrections

A multi-leg example: Higgs production via weak vector-boson fusion (VBF)

colour exchange between quark lines suppressed \Rightarrow small QCD corrections

> Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00; Figy, Oleari, Zeppenfeld '03 \hookrightarrow *t*-channel approximation (vertex corrections)

VBF cuts and background suppression:

- 2 hard "tagging" jets demanded: $p_{\rm Tj} > 20 \,{\rm GeV}, \quad |y_{\rm j}| < 4.5$
- tagging jets forward-backward directed: $\Delta y_{jj} > 4$, $y_{j1} \cdot y_{j2} < 0$.
- \hookrightarrow Suppression of background
 - from other (non-Higgs) processes, such as $t\bar{t}$ or WW production Zeppenfeld et al. '94-'99
 - induced by Higgs production via gluon fusion, such as $gg \rightarrow ggH$ Del Duca et al. '06; Campbell et al. '06

signature = Higgs + 2jets

Work on radiative corrections to the production of Higgs+2jets

- NLO QCD corrections to VBF in DIS-like approximation
 - ♦ total cross section Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00
 - distributions
 Figy, Oleari, Zeppenfeld '03; Berger, Campbell '04
 - matching with parton shower (POWHEG) Nason, Oleari '09
- (full) NLO QCD+EW corrections to VBF
 - $\label{eq:constraint} \stackrel{~~}{\hookrightarrow} \ \mbox{NLO QCD} \ \sim \ \mbox{NLO EW} \ \sim \ 5-10\% \ \ \mbox{Figy, Palmer, Weiglein '10 (DIS-like EW)}$
- NNLO QCD corrections to VBF in DIS-like approximation $_{\rm Bolzoni,\ Maltoni,\ Moch,\ Zaro\ '10} \hookrightarrow \rm NNLO\ QCD\ \sim\ 1-2\%$
- NLO QCD corrections to $gg \rightarrow Hgg$, etc. Campbell, R.K.Ellis, Zanderighi '06
 - \hookrightarrow contribution to VBF $\sim~5\%$ Nikitenko, Vazquez '07 (NLO scale uncertainty $\sim35\%$)
- QCD loop-induced interferences between VBF and Hgg-initiated channels \leftrightarrow impact $\lesssim 10^{-3} \%$ (negligible!) Andersen, Binoth, Heinrich, Smillie '07 Bredenstein, Hagiwara, Jäger '08
- loop-induced VBF in gg scattering \hookrightarrow impact $\sim 0.1\%$

Harlander, Vollinga, Weber '08

• SUSY QCD+EW corrections \hookrightarrow |MSSM - SM| \lesssim 1% for SPS points (2-4% for low SUSY scales)

Distribution in the azimuthal angle difference $\Delta \phi_{ii}$ of the tagging jets

Sensitivity to non-standard effects:

Hankele, Klämke, Zeppenfeld, Figy '06

(Individual contributions without SM)

CP-even:	\mathcal{L}	\propto	$HW^+_{\mu\nu}W^{-,\mu\nu}$
CP-odd:	\mathcal{L}	\propto	$H\tilde{W}^+_{\mu\nu}W^{-,\mu\nu}$

Corrections to the $\Delta \phi_{ij}$ distribution:

Ciccolini, Denner, Dittmaier '07

HAWK

Neglected corrections could be misinterpreted as non-standard couplings

Physikalisches Institut

90

 $\Delta \phi_{\rm ii}$

 $M_{\rm H} = 120 \,{\rm GeV}$

135

180

Production via Higgs-strahlung

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 – 24

Current status of theoretical predictions

- NLO QCD: corrections entirely Drell–Yan like Han, Willenbrock '91; Ohnemus, Stirling '93; Baer, Bailey, Owens '93 VV2H (Spira); MCFM (Campbell, R.K.Ellis)
- NLO EW: stable W/Z bosons, total XS Ciccolini, Dittmaier, Krämer '03

W/Z decays, differential XS via HAWK Denner, Dittmaier, Kallweit, Mück '11

• NNLO QCD: stable W/Z bosons, DY part for total XS, $gg \rightarrow ZH$ Brein, Djouadi, Harlander '03 (VH@NNLO)

> WH/ZH with W/Z decay, DY part for differential XS Ferrera, Grazzini, Tramontano '11,'14

non-DY parts, total XS Brein, Harlander, Wiesemann, Zirke '11

• NNNLO QCD: $gg \rightarrow ZH$ @ NLO QCD, stable Z boson, total XS Altenkamp, Dittmaier, Harlander, Rzehak, Zirke '12

NLO EW corrections to the $p_{\mathrm{T,H}}$ distributions

- $\delta_{\rm EW}$ for $p_{\rm T,H} \lesssim 100 \, {\rm GeV}$ roughly reflects corrections to total cross sections
- size of corrections increases with increasing $p_{T,H}$, e.g. $H\ell^+\nu$: $\delta_{EW} < -11\%$ for $p_{T,H} > 200 \, GeV$

Production of $\mathrm{t\bar{t}H}$ final states

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

Survey of LO/NLO contributions to ${\rm t\bar{t}H}$ production

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

Known corrections to $\mathrm{t\bar{t}H}$ production

NLO QCD corrections

Beenakker et al. '01,'02; Dawson et al. '01,'02

- QCD parton-shower matching via aMC@NLO, PowHel, MadSpin, Sherpa Frederix et al. '11; Garzelli et al. '11; Artoisenet et al. '12; LHC HXS WG '13
- EW corrections
 - EW tree + EW NLO + real W/Z/H emission (HBR) in *MadGraph5 aMC@NLO* Frixione et al. '14,'15
 - EW tree + EW NLO with FeynArts/FormCalc/LoopTools Zhang et al. '14

NLO EW corrections to the $p_{\mathrm{T,H}}$ distribution in $\mathrm{t\bar{t}H}$ production

Frixione et al. '14

- EW corrections $\sim 1{-}2\%$ for $\sigma_{\rm tot}$
- weak corrections grow to $\sim -10\%$ for $p_{\rm T,H}\gtrsim 400{-}500\,{\rm GeV}$
- EW corrections mostly swamped by QCD uncertainties

Summary & outlook

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 - 31

EW corrections to Higgs production and decay

- known at NLO for all relevant SM Higgs processes
- generic size in inclusive quantities $\delta \sigma_{\rm EW} \sim 5-10\%$ \hookrightarrow non-negligible at aimed level of precision
- larger corrections in differential cross sections
 - \hookrightarrow enhancements at high scales (e.g. in $p_{T,H}$), distortion of distributions (angular, invariant mass, etc.)
- EW corrections in BSM Higgs physics widely unknown (MSSM is exception)
- Lessons for Higgs couplings analyses
 - preliminary recipe: rescaling of $\sigma_{pp \to H...}$ and BR(H $\to X$)
 - → screws up SM (inconsistent model)
 - \hookrightarrow EW corrections ill-defined \rightarrow their size goes to theoretical uncertaintites
 - a consistent approach at the EW higher-order levels requires
 - consistent quantum-field-theoretical models, such as SM or specific BSM models
 - ◇ model-independent analyses properly based on effective field theories
 - $\,\hookrightarrow\,$ non-standard operators and their renormalization

... more homework for HiggsTools theorists !

Backup slides

Physikalisches Institut

Stefan Dittmaier, Electroweak corrections

HiggsTools, Annual Meeting, Freiburg, April 2015 - 33

Input parameter schemes

SM input parameters: (natural choice) $\alpha_{\rm s}, \alpha, M_{\rm W}, M_{\rm Z}, M_{\rm H}, m_f, V_{\rm CKM}$

Issues:

- Setting of α : process-specific choice to
 - avoid sensitivity to non-preturbative light-quark masses
 - minimize universal EW corrections

Schemes: fix $M_{\rm W}$, $M_{\rm Z}$ and α

- $\diamond \alpha(0)$ -scheme: relevant for external photon
- $\diamond \alpha(M_Z)$ -scheme: relevant for internal photons at high energies (γ^*)
- ♦ G_{μ} -scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 M_{W}^{2}/M_{Z}^{2})/\pi$, relevant for W, Z

• Warnings / pitfalls:

- ◇ α must not be set diagram by diagram, but global factors like $\alpha(0)^m \alpha_{G_{\mu}}^n$ in gauge-invariant contributions mandatory !
- ♦ weak mixing angle: $s_W \neq$ free parameter if M_W and M_Z are fixed !
- Yukawa couplings are uniquely fixed by fermion masses !

Electroweak radiative corrections at high energies (continued)

Example: Drell-Yan production

Neutral current: $pp \rightarrow \ell^+ \ell^-$ at $\sqrt{s} = 14 \text{ TeV}$ (based on S.D./Huber arXiv:0911.2329)

$M_{\ell\ell}/{ m GeV}$	$50 - \infty$	$100-\infty$	$200-\infty$	$500 - \infty$	$1000-\infty$	$2000 - \infty$
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\delta_{ m qar q, phot}^{ m rec}/\%$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta_{ m qar q,weak}/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta^{(1)}_{ m Sudakov}/\%$	0.27	0.54	-1.43	-7.93	-15.52	-25.50
$\delta^{(2)}_{ m Sudakov}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38

no Sudakov domination!

Charged current: $pp \rightarrow \ell^+ \nu_\ell$ at $\sqrt{s} = 14 \,\mathrm{TeV}$ (based on B

based on Brensing	et al.	arXiv:0710.3309)	ĺ

$M_{\mathrm{T},\nu_{\ell}\ell}/\mathrm{GeV}$	$50-\infty$	$100-\infty$	$200-\infty$	$500-\infty$	$1000-\infty$	$2000-\infty$
$\sigma_0/{ m pb}$	4495.7(2)	27.589(2)	1.7906(1)	0.084697(4)	0.0065222(4)	0.00027322(1)
$\delta^{\mu^+\nu\mu}_{\rm q\bar{q}}/\%$	-2.9(1)	-5.2(1)	-8.1(1)	-14.8(1)	-22.6(1)	-33.2(1)
$\delta^{ m rec}_{ m qar q}/\%$	-1.8(1)	-3.5(1)	-6.5(1)	-12.7(1)	-20.0(1)	-29.6(1)
$\delta^{(1)}_{ m Sudakov}/\%$	0.0005	0.5	-1.9	-9.5	-18.5	-29.7
$\delta^{(2)}_{ m Sudakov}/\%$	-0.0002	-0.023	-0.082	0.21	1.3	3.8
Sudakov domination						

(PAR)

Electroweak effects in PDFs (continued)

NNPDF2.3QED PDF set

Photon PDF:

- agreement with old $\gamma_{\text{MRST}}(x)$ for $x \gtrsim 0.03$, but $\gamma_{\text{NNPDF}}(x) < \gamma_{\text{MRST}}(x)$ for smaller x
- lack of experimental information for $x \gtrsim 0.1$
 - \hookrightarrow constrained via $\gamma\gamma \rightarrow \mu^+\mu^-$, W⁺W⁻ for larger *x* in the future ?

Partial H width for $H \to WW \to \nu_e e^+ \mu^- \bar{\nu}_{\mu}$

Bredenstein, Denner, Dittmaier, Weber '06

Important distributions in $H \to ZZ \to f_1 \bar{f_1} f_2 \bar{f_2}$

Invariant Z mass:

 \hookrightarrow distributions sensitive to spin and parity

Angle between Z decay planes:

Fakultat für Mathem Albert-Ludwigs Univ

Choi, Miller,

Distribution of invariant Z mass in ${\rm H} \rightarrow {\rm ZZ} \rightarrow {\rm e}^- {\rm e}^+ \mu^- \mu^+$

 γ recombination if $M_{\mathrm{e}\gamma/\mu\gamma} < 5 \,\mathrm{GeV}$

Large corrections due to photon emission in Z reconstruction

Corrections to distribution in angle between Z decay planes

Physikalisches Institut

Bredenstein, Denner, Dittmaier, Weber '06

 $\hookrightarrow 5-10\%$ effects that in general distort shapes of distributions

An example:

Total cross section: NNLO QCD and NLO EW corrections

$$\sigma_{\rm WH} = \sigma_{\rm WH}^{\rm VH@NNLO} \times (1 + \delta_{\rm WH,EW})$$

$$\sigma_{\rm ZH} = \sigma_{\rm ZH}^{\rm VH@NNLO} \times (1 + \delta_{\rm ZH, EW}) + \sigma_{\rm gg \rightarrow ZH}$$

LHC Higgs XS report CERN-2011-002, arXiv:1101.0593 [hep-ph]

Note: $\delta_{VH,EW}$ insensitive to PDFs !

K factors for $pp \rightarrow VH + X @ \sqrt{s} = 14 \text{ TeV}$:

- typical size of corrections: $\mathcal{O}(\alpha_s^2) \sim \mathcal{O}(\alpha) \sim 5-10\%$
- spikes at $M_{\rm H} = 2M_{\rm W}$ and $M_{\rm H} = 2M_{\rm Z}$ = perturbative artifacts from WW/ZZ threshold

Physikalisches Institu

ightarrow require inclusion of W/Z decays (see below)

Differential cross section: (N)NLO QCD and NLO EW corrections

LHC Higgs XS report CERN-2012-002, arXiv:1201.3084 [hep-ph]

$$d\sigma_{\rm WH} = d\sigma_{\rm WH}^{\sf VH@NNLO(DY)} \times (1 + \delta_{\rm WH,EW})$$

 $d\sigma_{\rm ZH} = d\sigma_{\rm ZH}^{\rm VH@NLO} \times (1 + \delta_{\rm ZH, EW})$

Again: $\delta_{VH,EW}$ insensitive to PDFs !

Features:

- NNLO QCD for WH/ZH in Drell–Yan-like approximation Ferrera, Grazzini, Tramontano '11,'14
- NLO EW (+QCD) calculated with HAWK Denner, Dittmaier, Kallweit, Mück '11
- size of corrections and TH uncertainties larger than for $\sigma_{\rm tot}$

channel	${ m H}\ell^+ u_\ell$	$\mathrm{H}\ell^-ar{ u}_\ell$	$\mathrm{H}\ell^+\ell^-$	$\mathrm{H} u_\ell ar{ u}_\ell$
$\delta_{ m EW}^{ m bare}/\%$	-14	-14	-11	-7
$\Delta_{ m PDF}/\%$	± 5	± 5	± 5	± 5
$\Delta_{ m scale}/\%$	± 2	± 2	± 2	± 2
$\Delta_{ m HO}/\%$	± 1	± 1	±7	± 7

NLO EW corrections to the integrated cross section of $pp \rightarrow H\ell^+\nu_\ell + X$

- sound behaviour of $\delta_{\rm EW}$ near WW/ZZ thresholds

• size of EW corrections increases for boosted-Higgs scenario wrt $\sigma_{\rm tot}$!

Physikalisches Institut

NLO EW corrections to $p_{T,\ell}$ and $p_{T,miss}$ distributions for $pp \to H\ell^+\nu_\ell + X$

 \hookrightarrow EW corrections mostly of non-universal origin (not simply FSR!)

Physikalisches Institut