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Perturbative series in QFT

✦ Typical perturbative behavior of observable 
‣ α is the coupling of the theory (QCD, QED, ..) 

‣ L is some numerically large logarithm 

‣ “1” =  π2, ln2, anything no 

‣ Notice: effective expansion parameter is αL2. Problem occurs if is this >1!! 

‣ Possible fix: reorganize/resum terms such that  

✦ Notice the definition of LL, NLL, etc
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LL, NLL,.. and matching to fixed order
✦ Leading-log, next-to-leading log, etc 

‣ Schematic overview 

‣ Systematic expansion in αs in the exponent 
✓ If we can find the coefficients cn, dn, en, C0, C1 etc 

‣ It is directly clear how to combine this with an exact NLO or NNLO calculation 
✓ Expand the resummed version to the next order in αs . Add the NLO and resummed, but subtract the order αs - 

expanded resummed result, to avoid double counting. 

- generalization to NNLO is “obvious” 

✦ Various examples of logs
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Example of double log: recoil logs
✦ Eg. pT of Z-bosons produced in hadron collisions    

‣ Z-boson gets pT from recoil agains (soft) gluons 

‣ Visible logs (argument made of measured quantities) 
✓ 1 emission: with gluon very soft: divergent 

- virtual: large negative bin at pT=0 

‣ The turn-over at pT around 5  GeV is only explained by resummation, not by finite order calculations
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Divergence near pT=0
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Physics near small pT
✦ At finite order 

‣ hence the real divergence toward pT near zero 

✦ Resummed 

✓ this is also the effective behaviour of the parton shower there 

✦ Notice: 
‣ finite order oscillates wildly near small pT, and may be negative 

‣ resummed is positive, and it tracks the data well 

✦ Physics of resummed answer: 
‣ probability of the process not to emit at small pT is vanishingly small 

✓ There is violent acceleration of color charges after all..
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Another example: threshold logs
✦ Logarithm of “energy above threshold Q2” 

‣ “Invisible” logs”: argument made up of integration variables 

‣ Typical effect: enhancement of cross section
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Resummation 101
✦ Cross section for n extra gluons 

✦ When emissions are soft, can factorize phase space measure and matrix element  
[eikonal approximation] 

✦ Sum over all orders 

✦ Incorporate Theta or Delta functions in space space 
‣ but these must factorize similarly, or they cannot go into exponent

8

Phase space measure Squared matrix element

�(n) =
1
2s

�
d�n+1(P, k1, . . . , kn)� |M(P, k1, . . . , kn)|2

d�n+1(P, k1, . . . , kn) �� d�(P )�
�
d�1(k)

�n 1
n!

�

n

�(n) = �(0)� exp
� �

d�1(k)|M1 emission(k)|2
�

|M(P, k1, . . . , kn)|2 �⇤ |M(P )|2 ⇥
�
|M1 emission(k)|2

�n



Phase space in resummation
✦ Kinematic condition expresses “z” in terms of gluon energies 

‣ or conservation of transverse momentum 
✦ Transform (e.g. Laplace or Fourier) factorizes the phase space 

✦ So can go into exponent 

‣ Large logs:  ln(N) or ln(bQ)
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Resummation and factorization
✦ Very generically, if a quantity factorizes, one can resum it 
‣ Renormalization; factorizes UV modes into Z-factor 

‣ Evolution equation (here RG equation) 

‣ Solving = resumming
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Resummation and factorization
✦ Type of factorization dictates resummation 
‣ small x [ln(x)] → kT factorization 

✓ Regge, High-Energy,.. 

‣ large x  [ln(1-x)] → near-threshold factorization 

✓ Threshold, Sudakov 

✦ Factorization is essentially separating degrees of freedom 

‣ Systematic approach in Soft Collinear Effective Theory
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✦ Effective field theory approach: SCET 
‣ Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons 

✓ Powerful power counting. Using  +,-,T notation 

✓ Fields scale similarly:  

‣ 2 gauge transformations, collinear and ultrasoft 
✓ and two types of Wilson lines:  
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✦ Decouple soft gluons from collinear via field redefinition 

‣ Soft gluons do not of course fully disappear from every observable 
‣ Can form soft functions (matrix elements of soft Wilson lines) 

✦ Resummation: match and run 
‣ Write observable (e.g. σDY) as   

‣ Solve RG equations for OiSCET  
‣ Find C by 1-loop (or 2-loop) calculations on both sides 

✦ Powerful method
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Factorization for threshold resummation
✦ Δi(N):  initial state soft+collinear radiation effects 
‣ real+virtual 
‣ αsnln2n N 

✦ Sij(N):  soft, non-collinear radiation effects 
‣ αsnlnn N 

✦ H:  hard function, no soft and collinear effects
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Resummed cross sections
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Eikonal exponentiation
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Resummation using path integrals

M(p1, p2, {k}) =
�
DAs Dx(t) H[x] f1[As, x(t)] f2[As, x(t)] eiS[As]
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Non-abelian exponentiation: webs

✦ Not immediately obvious how this could work (the path integral must be a real 
exponential), since 
‣ Source terms have non-abelian charges, so don’t commute 
‣ External line factors are path-ordered exponentials 
‣ Nevertheless 

✦ Proven using replica trick (from statistical physics) 
✦ Generalized to multiple colored external lines
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Tranverse momentum resummation
✦ Method: b-space resummation 
‣ Code: HqT 

✦ Key part of resummation formula 

‣ first 3 orders of Ac, and 2 of Bc are known. NNLL+NNLO accuracy.
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Figure 2: The qT spectrum of Higgs bosons at the Tevatron and the LHC. The bands are obtained
by varying µF and µR (left panels) and Q (right panels) as described in the text.
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Transverse-momentum resummation and the structure of hard factors at the NNLO Leandro Cieri

to δ (2)(qT) or to large logarithms of the type 1
q2T
lnm(M2/q2T ). The partonic cross sections of the

second term in the right-hand side of Eq. (2.2) are regular (i.e. free of logarithmic terms) order-
by-order in perturbation theory as qT → 0. In the following we focus on the singular component,
dσ (sing)

F , which has an universal all-order structure. The corresponding resummation formula is
written as [1, 5, 6]

dσ (sing)
F (p1, p2;qT,M,y,Ω)
d2qT dM2 dy dΩ

=
M2

s ∑
c=q,q̄,g

[
dσ (0)

cc̄,F

]∫ d2b
(2π)2

eib·qT Sc(M,b)

× ∑
a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]
cc̄;a1a2

fa1/h1 fa2/h2 , (2.3)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) is a numerical coefficient, and the kine-
matical variables x1 = M√

s e
+y and x2 = M√

s e
−y. The function Sc(M,b) is the Sudakov form factor,

which is universal (process independent) [5]: it only depends on the type (c = q or c = g) of col-
liding partons, and it resums the logarithmically-enhanced contributions of the form lnM2b2 (the
region qT ≪ M corresponds to Mb≫ 1 in impact parameter space). The all-order expression of
Sc(M,b) is [2]

Sc(M,b) = exp

{

−
∫ M2

b20/b2

dq2

q2

[
Ac(αS(q2)) ln

M2

q2
+Bc(αS(q2))

]}

, (2.4)

where Ac(αS) and Bc(αS) are perturbative series in αS. The perturbative coefficients A
(1)
c ,B(1)

c ,A(2)
c

[3], B(2)
c [7, 4, 8] and A(3)

c [9] are explicitly known.
The Born level factor2

[
dσ (0)

cc̄,F

]
in Eq. (2.3) is obviously process dependent, although its

process dependence is elementary (it is simply due to the Born level scattering amplitude of the
partonic process cc̄ → F). The remaining process dependence of Eq. (2.3) is embodied in the
‘hard-collinear’ factor

[
HFC1C2

]
. This factor includes a process-independent part and a process-

dependent part. The structure of the process-dependent part is the main subject of the present
proceeding.

In the case of processes that are initiated at the Born level by the qq̄ annihilation channel
(c= q), the symbolic factor

[
HFC1C2

]
in Eq. (2.3) has the following explicit form [5]

[
HFC1C2

]
qq̄;a1a2

= HF
q (x1p1,x2p2;Ω;αS(M2)) Cqa1(z1;αS(b

2
0/b2)) Cq̄a2(z2;αS(b

2
0/b2)) , (2.5)

and the functions HF
q and Cqa =Cq̄ā have the perturbative expansion

HF
q (x1p1,x2p2;Ω;αS) = 1+

∞

∑
n=1

(αS
π

)n
HF (n)
q (x1p1,x2p2;Ω) , (2.6)

Cqa(z;αS) = δqa δ (1− z)+
∞

∑
n=1

(αS
π

)n
C(n)
qa (z) . (2.7)

The function HF
q is process dependent, whereas the functions Cqa are universal (they only depend

on the parton indices). The factorized structure in the right-hand side of Eq. (2.5) is based on the
2The cross section at its corresponding lowest order in αS.
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Higgs + (no) jets
✦ Large logs due to exclusive binning: ln(pTveto/m). Resummations using SCET 
✦ Accuracies have gone up  
‣ NNLL’+NNLO 
‣ N3LL’+NNLO 

✓ and include careful assessment of uncertainties 
✦ Resummation also here enters also the realm where once only Monte Carlo roamed.. 
‣ how to combine resummed Higgs cross sections in different exclusive jet bins 

✓ “resummed theory covariance matrix” 
✓ reduction of factor 2 in theoretical uncertainties! 

‣ automation @ NNLO+NLO!
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N3LO Higgs from small and large x
✦ So far, focus on large N  
✦ Interesting idea: use analyticity structure in complex N space 
‣ From large N (large x) and N=1 (small x) resummation 

✓ Sudakov  lniN,   BFKL  1/(N-1)i 

‣ Switch to (1-z)2/z 
‣ Leads in Mellin space to 

✓ Removes branchpoint at N=0 
✦ Corrections beyond NNLO about 17% (m=125 GeV at 8 TeV)
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N3LL resummation
✦ Mellin space analysis 
‣ Include information from N=1 pole (~ next-to-soft terms) 
‣ For inverse Mellin transform, employ both Minimal Prescription and Borel prescription 

✓ but not much difference 

‣ Nice progression, especially with exponentiated constants  

‣ Code: ResHiggs and ggHigs
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Figure 2. Our best prescription for the resummation, namely A-soft2 described in Sect. 3.3, plotted as a
function of the renormalization scale µR. The factorization scale is µF = mH. We show fixed-order results
as well as resummed ones. The plot on the left is obtained with the overall constant ḡ0, while the one on
the right with its exponentiated version ¯G0, as defined in Eq. (3.10).

We now move to resummation. In order to study the effect of different logarithmic orders, we
show in Fig. 2 the resummation at LL, NLL, NNLL and N3LL accuracy4, always matched to the
same NNLO contribution, as a function of µR, for fixed µF = mH. We also show, for comparison,
LO, NLO and NNLO curves. The fixed order results have been computed using the code ggHiggs,
while for the resummation we have written a new code called ResHiggs. The plots show our
best prediction, A-soft

2

, with ḡ

0

(left panel) and its exponentiated version ¯

G

0

(right panel). It is
interesting to observe that exponentiating ḡ

0

leads to a flatter resummed result, thereby suggesting
that its exponentiation is probably improving the convergence of the series. We also observe that,
in any case, the N3LL result is very similar in both cases over a wide range of scales, so the
exponentiation of ḡ

0

does not change significantly the final result, as we have anticipated at the
end of Sect. 3.3. In both cases, we note that the inclusion of soft-gluon resummation at N3LL
significantly reduces the µR scale uncertainty of fixed-order results and of previous resummed orders.

In Fig. 3 we concentrate on NNLO+N3LL and also show the effect of varying µF. Since the
resummation involves only the gg channel, the resummed result depends more significantly on the
scale µF, although formally such dependence is of order ↵3

s

with respect to the Born cross section.
Over a range of roughly a factor of 2 about µR = mH/2 the results with (right panel) or without (left
panel) exponentiation of ḡ

0

are very similar, while they differ (and are more sensitive to µF) for more
extreme choices of µR (especially at small µR). In these regions, the result obtained exponentiating
ḡ

0

looks more sensible and stable, suggesting, once again, that exponentiating ḡ

0

provides a more
stable result. Moreover, we notice that NNLO+N3LL result with µF = mH/ 2 barely depends on
µR. We also observe that resummed curves for different values of µF approximately coincide for a
value of µR slightly smaller than mH/2.

In Fig. 4 we show the same plots as in Fig. 3, but this time obtained with the  -soft
2

prescription.
Since now the constant function in front of the exponential is g

0

rather than ḡ

0

, we can expect a
result different from that of A-soft

2

, when g

0

is not exponentiated (left panel). However, the result
with G

0

(right panel) is very similar to the analogous result with A-soft
2

. It follows that  -soft
2

provides an acceptable alternative to our best choice A-soft
2

, provided that G

0

is used, i.e with g

0

4We are adopting Notation*, see Table 1, so N3LL is the currently highest possible accuracy.
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N3LO  Higgs and subleading powers
✦ Large logs in N3LO are present in resummed expression 

‣ A and D known to 3rd order 
✦ Earlier result added also ln(1-z) logs 
✦ Full N3LO result [Falko Dulat’s tallk] realized full power of (1-z) threshold expanion
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Generic large x behavior
✦ For DY, DIS, Higgs, singular behavior when x→ 1 

‣ delta-function: pure virtuals 
‣ plus distributions: resummable to all orders (N3LL for Higgs production now) 
‣ NLP logarithms, systematics are beginning to emerge 

✦ Method of regions allows their computation 

✓ at least to p=37 
✦ Can they be predicted?
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NLP logs in Drell-Yan  at NNLO
✦ Check NLP Feynman rules for NNLO Drell-Yan double real emission (only CF2 terms) 

‣ Result at NE level, agrees with equivalent exact result 

✦ Next, 1 Real- 1 Virtual (only CF2 terms) 
✓ virtual gluon not necessarily soft 
✓ we redid exact calculation again, for comparison
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Figure 19: Diagrams for the double-real-emission contribution to the NNLO Drell-Yan K factor
discussed in the text. A cut is implied over the intermediate state in each case, and complex
conjugates of the above diagrams (excluding (e), which is real) must also be included.

are not fully uncorrelated, but their correlation is simple, depending only on the global

variables of the multi-gluon system and not on individual gluon momenta.

This discussion applies to the explicit example of Drell-Yan production. We expect

that such arguments will apply more generally in other scattering processes, pending a

suitable parametrisation of the partonic momenta.

C. The double-real-emission contribution to the Drell-Yan K factor

In this appendix we briefly describe how to compute the terms proportional to C2
F of the

Drell-Yan K-factor, for the qq̄ initial state, by using ordinary Feynman diagrams and ex-

panding them to NE order. The relevant diagrams are shown in fig. 19. The corresponding

squared matrix elements are easily computed, and must then be integrated with the phase

space measure in eq. (6.26). As an example, diagram (a) contributes a factor

|M|2(a) ∝ Tr [̸ p̄γα(̸p− ̸k1− ̸k2)γν (̸p− ̸k1)γµ ̸pγα(− ̸ p̄+ ̸k1+ ̸k2)γµ(− ̸ p̄+ ̸k2)γν ]
(p− k1 − k2)2 (p − k1)2 (−p̄+ k1 + k2)2 (−p̄+ k2)2

. (C.1)

Note that the contributions from diagrams (a) − (d) must be counted twice in order to

include Hermitian conjugate graphs, while diagram (e) is real.

To calculate the squared matrix element to NE order, one first relabels ki → ξki, so

that

p̄ · ki → ξ p̄ · ki, p · ki → ξ p · ki, ki · kj → ξ2 ki · kj . (C.2)
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One then expands each diagram to first subleading order in ξ, which corresponds to the

NE approximation. Through repeated use of the identities

p · k1
p · k2

=
1

p · k2
s− t̃

2
− 1 ,

p̄ · k1
p̄ · k2

=
1

p̄ · k2
s12 + t̃−Q2

2
− 1 , (C.3)

(with similar results for k1 ↔ k2), each diagram can be written as a sum of terms containing

no more than two factors of p · ki and p̄ · ki. Then each term becomes an integral of the

form of eq. (6.29). The remaining phase space integrals can be carried out after expanding

the integrand in powers of 1− z and ϵ, as described for the NE calculation in Sec. 6.2. The

final result for the full amplitude (keeping only logarithmic terms with rational coefficients

as done in the text) is given by

K(2)
NE(z) =

(αs

4π
CF

)2 [
−32

ϵ3
D0(z) +

128

ϵ2
D1(z) −

128

ϵ2
log(1− z)

− 256

ϵ
D2(z) +

256

ϵ
log2(1− z)− 320

ϵ
log(1− z)

+
1024

3
D3(z)−

1024

3
log3(1− z) + 640 log2(1− z)

]
, (C.4)

which is in complete agreement with the sum of eqs. (6.31) and (6.33).
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Diagnosis: method of regions
✦ Method of region approach, extended to next power 
‣ Allow treatment of (next-to-)soft and (next-to-)collinear on equal footing 

✦ How does it work? 
‣ Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by 

appropiate scaling 

‣ expand integrand in λ, to leading and next-to-leading order 
‣ but then integrate over all k1 anyway! 
‣ Treat emitted momentum as soft and incoming momenta as hard
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’’nnlo 2’’ (c) ’’nnlo 2b’’ (d)

’’nnlo 3b’’ (b)’’nnlo 3’’ (a)

Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads

�NNLO
2

= g4s

Z
[dk1] [dk2]

1

k2
1

(2⇡)�(k2) ✓(k0) �
⇣!
2
� k0

⌘

·
⇢
Tr


p/ �↵ k/2 � p̄/

(k2 � p̄)2
�µp̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�↵

p/+ k/1 � k/2
(p+ k1 � k2)2

�µ
p/+ k/1

(p+ k1)2
�⇢

�

+Tr


p/ �µ p/� k/2

(p� k2)2
�↵p̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�µ

k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�↵

p/+ k/1
(p+ k1)2

�⇢

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�↵ k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�µ k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �↵ p/� k/2

(p� k2)2
�µ

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�µ

p/+ k/1 � k/2
(p+ k1 � k2)2

�↵
k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �µ k/2 � p̄/

(k2 � p̄)2
�↵

��
. (41)
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ŝ
�
�2,�2,�2

�
;

Collinear : k1 ⇠
p
ŝ
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MoR
✦ Findings 
‣ Hard region (expansion in λ2) 

✓ reproduces already all plus-distributions, and some NLP logarithms 

‣ Soft region (expansion in λ2) 
✓ all integrals are scale-less, hence all zero in dimensional regularization 

‣ (anti-)collinear regions (expansion in λ) 
✓ only give NLP logarithms, once all diagrams in set are summed 

✦ Result: 
‣ the full  K(1)1r,1v is reproduced, including constants 

✓ Collinear regions give only NLP logarithms 
✓ Clearly, one must first expand in ε, then in soft momentum 

✦ For predictive power, need factorization
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New: a factorization approach
✦ Can we predict the log(1-z) logarithms?  
✦ Can we resum the log(1-z) logarithms to NLL, NNLL etc? 
‣ For both we need to factorize the cross section, as we did earlier 

✓ H contains both the hard and the soft function (non-collinear factors) 
✓ J: incoming jet functions 

✦ Next, add one extra soft emission, as in Low’s theorem. Let every blob radiate! 

✓ Can we compute each new “blob + radiation?”, and put it together? 
✓ New: radiative jet function
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(a) (b) (c)

J

J

J

J

J

J

H H H

Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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Factorization approach: main formula

✦ Upshot: a factorization formula for the emission amplitude 

✦ Remarks 
‣ for logs: to be contracted with cc amplitude 
‣ only process dependent terms are H and A 
‣ Jµ is needed  at loop level, done 
‣ In dim.reg.: J is scale-less, so =1
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Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads

�NNLO
2

= g4s

Z
[dk1] [dk2]

1

k2
1

(2⇡)�(k2) ✓(k0) �
⇣!
2
� k0

⌘

·
⇢
Tr


p/ �↵ k/2 � p̄/

(k2 � p̄)2
�µp̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�↵

p/+ k/1 � k/2
(p+ k1 � k2)2

�µ
p/+ k/1

(p+ k1)2
�⇢

�

+Tr


p/ �µ p/� k/2

(p� k2)2
�↵p̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�µ

k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�↵

p/+ k/1
(p+ k1)2

�⇢

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�↵ k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�µ k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �↵ p/� k/2

(p� k2)2
�µ

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�µ

p/+ k/1 � k/2
(p+ k1 � k2)2

�↵
k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �µ k/2 � p̄/

(k2 � p̄)2
�↵

��
. (41)

13

Aµ(pj , k) =
2X

i=1

✓
qi

(2pi � k)µ

2pi · k � k2
+ qi G

⌫µ
i

@

@p⌫i
+G⌫µ

i J⌫(pi, k)

◆
A(pi; pj)



NE logs in factorization approach
✦ Now put it all together, contract with cc amplitude and on integrate over phase 

space 
‣ Can do so in organized fashion 

✦ Result: 

‣ first steps toward resummation of NLP logarithms 
‣ could generalize “threshold expansion”
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Conclusions
✦ Various resummation tools  
‣ factorization + resummation   
‣ straight exponentiation of soft effect (“webs”) 
‣ systematically improvable, as fixed order 

✦ Benefits: 
‣ less uncertainty, better physics description 

✦ Progress 
‣ more exclusive cross sections 
‣ understanding of analytic structure 
‣ next-to-soft logarithms
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