Lecture nall 1, Physics nightise, University of Freiburg

Overview of resummation toolss

Lecture Hall 1, Physics Highrise, University of Freiburg

Overview of resummation "toolsses"

HiggsTools First Annual Meeting, Freiburg

Eric Laenen

Perturbative series in QFT

- Typical perturbative behavior of observable
 - α is the coupling of the theory (QCD, QED, ..)
 - L is some numerically large logarithm
 - "1" = π^2 , In2, anything no
 - Notice: *effective* expansion parameter is αL^2 . Problem occurs if is this >1!!
 - Possible fix: reorganize/resum terms such that

$$\hat{D} = 1 + \alpha_s (L^2 + L + 1) + \alpha_s^2 (L^4 + L^3 + L^2 + L + 1) + \dots$$

$$= \exp\left(\underbrace{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots}_{NLL}\right) \underbrace{C(\alpha_s)}_{\text{constants}}$$

$$+ \text{ suppressed terms}$$

Notice the definition of LL, NLL, etc

$$\hat{O}_2 = 1 + \alpha (L^2 + L + 1) + \alpha^2 (L^4 + L^3 + L^2 + L + 1) + \dots$$

LL, NLL,.. and matching to fixed order

- Leading-log, next-to-leading log, etc
 - Schematic overview

$$O = \alpha_s^p \left(\underbrace{\underbrace{C_0}_{\text{LL,NLL}} + C_1 \alpha_s + \dots}_{\text{NNLL}} \right) \exp \left[\underbrace{\left(\sum_{n=1}^{n} \alpha_s^n L^{n+1} c_n \right) + \left(\sum_{n=1}^{n} \alpha_s^n L^n d_n \right) + \left(\sum_{n=1}^{n} \alpha_s^n L^{n-1} e_n \right) + \dots \right]}_{\text{NLL}}$$

 $\blacktriangleright \quad Systematic expansion in \alpha_s in the exponent$

- It is directly clear how to combine this with an exact NLO or NNLO calculation
 - Expand the resummed version to the next order in α_s. Add the NLO and resummed, but subtract the order α_s expanded resummed result, to avoid double counting.

NNLL

 $O_{\text{NLO matched}} = O_{\text{NLO}} + O_{\text{resummed}} - (O_{\text{resummed}}) \Big|_{\text{expanded to } \mathcal{O}(\alpha_s)}$

- generalization to NNLO is "obvious"
- Various examples of logs

Example of double log: recoil logs

- Eg. pT of Z-bosons produced in hadron collisions
 - ► Z-boson gets p_T from recoil agains (soft) gluons
 - Visible logs (argument made of measured quantities)
 - 1 emission: with gluon very soft: divergent
 - virtual: large negative bin at pT=0
 - The turn-over at pT around 5 GeV is only explained by resummation, not by finite order calculations

Divergence near p_T=0

Physics near small p_T

+ At finite order

$$\frac{d\sigma}{dp_T} = c_0\delta(p_T) + \alpha_s \left(c_2^1 \frac{\ln p_T}{p_T} + c_1^1 \frac{1}{p_T} + c_0^1\delta(p_T)\right) + \dots$$

- $\blacktriangleright \quad \ \ hence the real divergence toward p_T near zero$
- Resummed

$$\frac{d\sigma}{dp_T} = c_0 \exp\left[-c_2^1 \alpha_s \ln^2(p_T) + \ldots\right]$$

- this is also the effective behaviour of the parton shower there
- + Notice:
 - ▶ finite order oscillates wildly near small p_T, and may be negative
 - resummed is positive, and it tracks the data well
- Physics of resummed answer:
 - **probability of the process not to emit at small p_T is vanishingly small**
 - There is violent acceleration of color charges after all..

Another example: threshold logs

- + Logarithm of "energy above threshold Q²" $\ln^2(1-Q^2/s)$
 - "Invisible" logs": argument made up of integration variables
 - Typical effect: enhancement of cross section

 $S \ge s \ge Q^2$

Resummation 101

Cross section for n extra gluons

Phase space measure Squared matrix element $\sigma(n) = \frac{1}{2s} \int d\Phi_{n+1}(P, k_1, \dots, k_n) \times |\mathcal{M}(P, k_1, \dots, k_n)|^2$

 When emissions are soft, can factorize phase space measure and matrix element [eikonal approximation]

$$d\Phi_{n+1}(P,k_1,\ldots,k_n) \longrightarrow d\Phi(P) \times \left(d\Phi_1(k)\right)^n \frac{1}{n!}$$

Sum over all orders

$$|\mathcal{M}(P,k_1,\ldots,k_n)|^2 \longrightarrow |\mathcal{M}(P)|^2 \times \left(|\mathcal{M}_{1 \text{ emission}}(k)|^2\right)^n$$

$$\sum_{n} \sigma(n) = \sigma(0) \times \exp\left[\int d\Phi_1(k) |\mathcal{M}_{1 \text{ emission}}(k)|^2\right]$$

- Incorporate Theta or Delta functions in space space
 - but these must factorize similarly, or they cannot go into exponent

Phase space in resummation

k ,

M Q

P

K =

Kinematic condition expresses "z" in terms of gluon energies

$$s = Q^2 - 2P \cdot K - K^2 \qquad \delta \left(1 - \frac{Q^2}{s} - \sum_i \frac{2k_i^0}{\sqrt{s}}\right)$$

Transform (e.g. Laplace or Fourier) factorizes the phase space

$$\int_0^\infty dw \, e^{-w \, N} \delta\left(w - \sum_i w_i\right) = \prod_i \exp(-w_i N) \qquad \qquad \int d^2 Q_T \, e^{ib \cdot Q_T} \, \delta^2(Q_T - \sum_i p_T^i) = \prod_i e^{ib \cdot p_T^i}$$

So can go into exponent

$$\sum_{n} \sigma(n) = \sigma(0) \times \exp\left[\int d\Phi_1(k) |\mathcal{M}_{1 \text{ emission}}(k)|^2 (\exp(-wN) - 1)\right]$$

Large logs: In(N) or In(bQ)

Resummation and factorization

- Very generically, if a quantity factorizes, one can resum it
 - Renormalization; factorizes UV modes into Z-factor

$$G_B(g_B, \Lambda, p) = Z\left(\frac{\Lambda}{\mu}, g_R(\mu)\right) \times G_R\left(g_R(\mu), \frac{p}{\mu}\right)$$

Evolution equation (here RG equation)

$$\mu \frac{d}{d\mu} \ln G_R \left(g_R(\mu), \frac{p}{\mu} \right) = -\mu \frac{d}{d\mu} \ln Z \left(\frac{\Lambda}{\mu}, g_R(\mu) \right) = \gamma(g_R(\mu))$$

Solving = resumming

$$G_R\left(\frac{p}{\mu}, g_R(\mu)\right) = G_R\left(1, g_R(p)\right) \underbrace{\exp\left[\int_p^{\mu} \frac{d\lambda}{\lambda} \gamma(g_R(\lambda))\right]}_{\text{resummed}}$$

Resummation and factorization

- Type of factorization dictates resummation
 - ▶ small x $[ln(x)] \rightarrow k_T$ factorization
 - Regge, High-Energy,...
 - large x $[ln(1-x)] \rightarrow$ near-threshold factorization
 - Threshold, Sudakov
- Factorization is essentially separating degrees of freedom
 - Systematic approach in Soft Collinear Effective Theory

Soft Collinear Effective Theory

- Effective field theory approach: SCET
 - Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons

$$\mathcal{L}_{SCET,qq} = \bar{\xi}_n (in \cdot D + i \not\!\!D_{c,\perp} \frac{1}{i\bar{n} \cdot D_c} i \not\!\!D_{c,\perp}) \frac{\not\!\!/}{2} \xi_n - \frac{1}{4} \mathrm{Tr} \{ G^c_{\mu\nu} G^{c,\mu\nu} \}$$

Powerful power counting. Using +,-,T notation

$$p_h \sim Q(1, 1, 1) \quad p_c \sim Q(\lambda, 1, \sqrt{\lambda}) \quad p_s \sim Q(\lambda, \lambda, \lambda)$$

✓ Fields scale similarly:

$$\xi_n \sim \lambda \quad \xi_{\bar{n}} \sim \lambda^2 \quad A_s \sim \lambda \quad \bar{n} \cdot A_c \sim \lambda^0$$

- 2 gauge transformations, collinear and ultrasoft
 - and two types of Wilson lines:

$$W_c(x)$$
 $S_n(x)$

Bauer, Fleming, Pirjol, Stewart,...

Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

• Decouple soft gluons from collinear via field redefinition $\xi_n(x) \to S_n(x)\xi_n^{(0)}(x)$

$$\bar{\xi}\frac{\bar{n}}{2}n \cdot D\xi \to \bar{\xi}^{(0)}\frac{\bar{n}}{2}n \cdot D_c\,\xi^{(0)}$$

- Soft gluons do not of course fully disappear from every observable
- Can form soft functions (matrix elements of soft Wilson lines)
- Resummation: match and run
 - Write observable (e.g. σ_{DY}) as

 $\langle O_{QCD} \rangle$ and as

$$\prod_{i} \langle O^{i}_{SCET} \rangle \times C^{i}_{\text{match}}$$

- Solve RG equations for OⁱSCET
- Find C by 1-loop (or 2-loop) calculations on both sides
- Powerful method

Factorization for threshold resummation

Δ_i(N): initial state soft+collinear radiation effects

real+virtual
$$\sigma(N) = \sum_{ij} \phi_i(N) \phi_j(N) \times \left[\Delta_i(N) \Delta_j(N) S_{ij}(N) H_{ij} \right]$$
 $\alpha_s^{n} \ln^{2n} N$

- S_{ij}(N): soft, non-collinear radiation effects
 - $\alpha_s^{n} \ln^n N$
- H: hard function, no soft and collinear effects

$$\Delta_i(N) = \exp\left[\ln N \frac{C_F}{2\pi b_0 \lambda} \{2\lambda + (1 - 2\lambda)\ln(1 - 2\lambda)\} + ..\right]$$
$$= \exp\left[\frac{2\alpha_s C_F}{\pi}\ln^2 N + ..\right]$$

Resummed cross sections

Sterman; Catani, Trentadue

Eikonal exponentiation

One loop vertex correction, in eikonal approximation

$$\mathcal{A}_0 \int d^n k \frac{1}{k^2} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}$$

Two loop vertex correction, in eikonal approximation

Exponential series

Yennie, Frautschi, Suura

Non-abelian exponentiation: webs

- Not immediately obvious how this could work (the path integral must be a real exponential), since
 - Source terms have non-abelian charges, so don't commute
 - External line factors are path-ordered exponentials
 - Nevertheless

$$\sum_{D} \mathcal{F}_{D} C_{D} = \exp\left[\sum_{i} \bar{C}_{i} w_{i}\right]$$

Gatheral; Frenkel, Taylor; Sterman

- Proven using replica trick (from statistical physics)
- Generalized to multiple colored external lines
- Gardi, EL, Stavenga, White Mitov, Sterman, Sung

EL, Stavenga, White

Tranverse momentum resummation

Method: b-space resummation

de Florian, Ferrara, Grazzini, Tommasini

- Code: HqT
- Key part of resummation formula

$$S_{c}(M,b) = \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{c}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{c}(\alpha_{S}(q^{2}))\right]\right\}$$

▶ first 3 orders of A_c, and 2 of B_c are known. NNLL+NNLO accuracy.

Higgs + (no) jets

- Large logs due to exclusive binning: In(p^{veto}/m). Resummations using SCET
- Accuracies have gone up
 - NNLL'+NNLO Stewart, Tackmann, Walsh, Zuberi
 - ► N3LL'+NNLO Becher, Neubert, Rothen
 - and include careful assessment of uncertainties
- Resummation also here enters also the realm where once only Monte Carlo roamed..
 - how to combine resummed Higgs cross sections in different exclusive jet bins
 - "resummed theory covariance matrix"
 - reduction of factor 2 in theoretical uncertainties!
 - automation @ NNLO+NLO!

Boughezal, Xiaohui, Petriello, Tackmann, Walsh

Becher, Frederix, Neubert, Rothen

N³LO Higgs from small and large x

So far, focus on large N

Ball, Bonvini, Forte, Marzani, Ridolfi

- Interesting idea: use analyticity structure in complex N space
 - From large N (large x) and N=1 (small x) resummation
 - ✓ Sudakov InⁱN, BFKL 1/(N-1)ⁱ
 - Switch to (1-z)²/z

EL, Magnea, Stavenga

Leads in Mellin space to

 $\ln N \to \psi_0(N)$

- Removes branchpoint at N=0
- Corrections beyond NNLO about 17% (m=125 GeV at 8 TeV)

N³LL resumation

Mellin space analysis

Catani, Cieri, de Florian, Ferrera, Grazzini

Bonvini, Marzani

- Include information from N=1 pole (~ next-to-soft terms)
- For inverse Mellin transform, employ both Minimal Prescription and Borel prescription
 - but not much difference

Eynck, EL, Magnea

Code: ResHiggs and ggHigs

N³LO Higgs and subleading powers

Large logs in N³LO are present in resummed expression

Anasthasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

$$\Delta_{c,N} = \exp\left\{\int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \left[2\int_{M^2}^{(1-z)^2 M^2} \frac{dq^2}{q^2} A_c(\alpha_s(q^2) + D_c(\alpha_s((1-z)^2 M^2))\right]\right\}$$

- A and D known to 3rd order
- Earlier result added also ln(1-z) logs
- Full N³LO result [Falko Dulat's tallk] realized full power of (1-z) threshold expanion

Generic large x behavior

+ For DY, DIS, Higgs, singular behavior when $x \rightarrow 1$

$$\delta(1-x) \qquad \left[\frac{\ln^i(1-x)}{1-x}\right]_+ \qquad \ln^i(1-x)$$

- delta-function: pure virtuals
- plus distributions: resummable to all orders (N3LL for Higgs production now)
- NLP logarithms, systematics are beginning to emerge
- Method of regions allows their computation

 $(1-x)^p \ln^q (1-x)$

- ✓ at least to p=37
- Can they be predicted?

NLP logs in Drell-Yan at NNLO

EL, Magnea, Stavenga, White

Check NLP Feynman rules for NNLO Drell-Yan double real emission (only C_F² terms)

Result at NE level, agrees with equivalent exact result

$$K_{\rm NE}^{(2)}(z) = \left(\frac{\alpha_s}{4\pi}C_F\right)^2 \left[-\frac{32}{\epsilon^3} \mathcal{D}_0(z) + \frac{128}{\epsilon^2} \mathcal{D}_1(z) - \frac{128}{\epsilon^2} \log(1-z) - \frac{326}{\epsilon^2} \log(1-z) + \frac{256}{\epsilon} \log^2(1-z) - \frac{320}{\epsilon} \log(1-z) + \frac{1024}{3} \mathcal{D}_3(z) - \frac{1024}{3} \log^3(1-z) + 640 \log^2(1-z) \right], \qquad \mathcal{D}_i = \left[\frac{\log^i(1-z)}{1-z} \right]_+$$

- Next, 1 Real- 1 Virtual (only C_F² terms)
 - virtual gluon not necessarily soft
 - we redid exact calculation again, for comparison

Diagnosis: method of regions

Vernazza, Bonocore, EL, Magnea, Melville, White

- Method of region approach, extended to next power
 Beneke, Smirnov
 - Allow treatment of (next-to-)soft and (next-to-)collinear on equal footing
- How does it work?
 - Divide up k₁ (=loop-momentum) integral into hard, 2 collinear and a soft region, by appropriate scaling

Hard : $k_1 \sim \sqrt{\hat{s}} (1, 1, 1)$; Soft : $k_1 \sim \sqrt{\hat{s}} (\lambda^2, \lambda^2, \lambda^2)$; Collinear : $k_1 \sim \sqrt{\hat{s}} (1, \lambda, \lambda^2)$; Anticollinear : $k_1 \sim \sqrt{\hat{s}} (\lambda^2, \lambda, 1)$.

- expand integrand in λ , to leading and next-to-leading order
- but then integrate over all k1 anyway!
- Treat emitted momentum as soft and incoming momenta as hard

$$k_2^{\mu} = (\lambda^2, \lambda^2, \lambda^2)$$
 $p^{\mu} = \frac{1}{2}\sqrt{s}n_+^{\mu}$ $\bar{p}^{\mu} = \frac{1}{2}\sqrt{s}n_-^{\mu}$

MoR

Vernazza, Bonocore, EL, Magnea, Melville, White

- Findings
 - Hard region (expansion in λ^2)
 - reproduces already all plus-distributions, and some NLP logarithms
 - Soft region (expansion in λ²)
 - all integrals are scale-less, hence all zero in dimensional regularization
 - (anti-)collinear regions (expansion in λ)
 - only give NLP logarithms, once all diagrams in set are summed
- Result:
 - the full $K^{(1)}_{1r,1v}$ is reproduced, including constants
 - Collinear regions give only NLP logarithms
 - \checkmark Clearly, one must first expand in $\epsilon,$ then in soft momentum
- For predictive power, need factorization

New: a factorization approach

- Can we predict the log(1-z) logarithms?
- Can we resum the log(1-z) logarithms to NLL, NNLL etc?
 - For both we need to factorize the cross section, as we did earlier
 - H contains both the hard and the soft function (non-collinear factors)
 - J: incoming jet functions
- Next, add one extra soft emission, as in Low's theorem. Let every blob radiate!

Del Duca, 1991

- Can we compute each new "blob + radiation?", and put it together?
- New: radiative jet function

$$J_{\mu}\left(p,n,k,\alpha_{s}(\mu^{2}),\epsilon\right)u(p) = \int d^{d}y \,\mathrm{e}^{-\mathrm{i}(p-k)\cdot y} \,\left\langle 0 \,|\, \Phi_{n}(y,\infty)\,\psi(y)\,j_{\mu}(0)\,|\,p\right\rangle$$

Bonocore, EL, Magnea, Melville, Vernaza, White

arXiv:1503.05156

Factorization approach: main formula

Upshot: a factorization formula for the emission amplitude

 $\mathcal{A}^{\mu}(p_{j},k) = \sum_{i=1}^{2} \left(q_{i} \frac{(2p_{i}-k)^{\mu}}{2p_{i}\cdot k - k^{2}} + q_{i} G_{i}^{\nu\mu} \frac{\partial}{\partial p_{i}^{\nu}} + G_{i}^{\nu\mu} J_{\nu}(p_{i},k) \right) \mathcal{A}(p_{i};p_{j})$

- Remarks
 - for logs: to be contracted with cc amplitude
 - only process dependent terms are H and A
 - \blacktriangleright J_µ is needed at loop level, done
 - In dim.reg.: J is scale-less, so =1

Del Duca, 1991

NE logs in factorization approach

Bonocore, EL, Magnea, Melville, Vernaza, White

- Now put it all together, contract with cc amplitude and on integrate over phase space
 - Can do so in organized fashion

$$d\sigma = d\Phi_{3,\text{LP}} \left(\mathcal{P}_{\text{LP}} + \mathcal{P}_{\text{NLP}} \right) + d\Phi_{3,\text{NLP}} \mathcal{P}_{\text{LP}}$$

Result:

Find agreement with exact result, including constants: four powers of logarithms

- first steps toward resummation of NLP logarithms
- could generalize "threshold expansion"

Conclusions

- Various resummation tools
 - factorization + resummation
 - straight exponentiation of soft effect ("webs")
 - systematically improvable, as fixed order
- Benefits:
 - less uncertainty, better physics description
- Progress
 - more exclusive cross sections
 - understanding of analytic structure
 - next-to-soft logarithms