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Perturbative series in QFT

+ Typical perturbative behavior of observable OQ = T T 1)+
»  ais the coupling of the theory (QCD, QED, ..) o P tie
»  Lis some numerically large logarithm
» 1" = 12, In2, anything no
»  Notice: effective expansion parameter is alL2. Problem occurs if is this >1!!

»  Possible fix: reorganize/resum terms such that

A

O = g e e e e E A e
= exp | Lgi(asL) +g2(asL) +asgs(asL) + ... | Clay)
LL constants

e

+ suppressed terms

+ Notice the definition of LL, NLL, etc



LL, NLL,.. and matching to fixed order

+ Leading-log, next-to-leading log, etc

»  Schematic overview

7

O ol \CB-/ O exp {(Z a?L”“cn Z @ i Z ol = }
LL,NLL il o
= .
o NLL Z
»  Systematic expansion in s in the exponent NNLL

v |If we can find the coefficients cn, dn, en, Co, Cq etc

» Itis directly clear how to combine this with an exact NLO or NNLO calculation

v Expand the resummed version to the next order in as . Add the NLO and resummed, but subtract the order as -
expanded resummed result, to avoid double counting.

ONLO matched = ONLO + Oresummed — (Oresummed) ’expanded to O(as)

- generalization to NNLO is “obvious”

+ Various examples of logs



Example of double log: recoil logs

Eg. pT of Z-bosons produced in hadron collisions

N4

Z-boson gets pr from recoil agains (soft) gluons

v

v 1 emission: with gluon very soft: divergent

- virtual: large negative bin at pT=0

v
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Visible logs (argument made of measured quantities)

The turn-over at pT around 5 GeV is only explained by resummation, not by finite order calculations
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Divergence near pr=0

differential cross section vs pt for 93 93 -> 23 93 LHC at 14 TeV _hist_pt
Entries 10000
Mean 24
RMS 13.71
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Physics near small pr

At finite order

>

do In 1
T = cador) + s (228 4 el + olpr) )+
pT P pr

hence the real divergence toward pr near zero

Resummed
dd_a = cp exp [—caas In?(pr) + .. ]
PT
v this is also the effective behaviour of the parton shower there

Notice:

>

>

finite order oscillates wildly near small pr, and may be negative

resummed is positive, and it tracks the data well

Physics of resummed answer:

>

probability of the process not to emit at small pr is vanishingly small

v

There is violent acceleration of color charges after all..



Another example: threshold logs

+ Logarithm of “energy above threshold Q% 1n2(1 — Q° /s)
»  “Invisible” logs™. argument made up of integration variables

»  Typical effect: enhancement of cross section

- —@

/




Resummation 101

+ Cross section for n extra gluons

Phase space measure Squared matrix element

1
O-(n) = Q_S/dq)’rL—l-l(P) k17"'7kn) X ‘M(P7 kl""’kn)P

+ When emissions are soft, can factorize phase space measure and matrix element
[eikonal approximation]

sl
d(I)n_H(P, ki,.. ,k’n) — d(I)(P) X (d(I)l(k)) ﬁ

+ Sum over all orders

n

MP, ks, k) — [MP)? x (| M emssion(R)IP)

> o(n) =a(0) x exp | / 4D ()| M emission (k) 2]

n

+ Incorporate Theta or Delta functions in space space

»  but these must factorize similarly, or they cannot go into exponent



Phase space in resummation

+ Kinematic condition expresses “z” in terms of gluon energies

s Q? 2k
(0 —IJP-K- R 5(1_?_;%)

»  or conservation of transverse momentum  6*(Qr — ) )

+ Transform (e.g. Laplace or Fourier) factorizes the phése space

+ S0 can go into exponent

Za(n) = ¢(0) X exp [/dfbl(k)l./\/ll e DN —

n

» Large logs: In(N) or In(bQ)



Resummauon and factorization

+ \Very generically, if a quantity factorizes, one can resum it
»  Renormalization; factorizes UV modes into Z-factor

GalonA) = 2 (1 9n(0)) x Ga(on(). )

»  Evolution equation (here RG equation)

d

o InGr (gR(u), %) = —ui an(—,gR(u)) = v(gr (1))

»  Solving = resumming
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Resummation and factorization

+ Type of factorization dictates resummation
»  small x [In(x)] — kr factorization

v Regge, High-Energy,..

» large x [In(1-x)] — near-threshold factorization

v Threshold, Sudakov
+ Factorization is essentially separating degrees of freedom

»  Systematic approach in Soft Collinear Effective Theory

18|



Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

+ Effective field theory approach: SCET

»  Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons

1
Ml

. 1 ¢ e,
Zch,L)ggn s ZTT{GIUJVG 5 }

LsCET,qq = &n(in- D+ i, |

v Powerful power counting. Using +,-, T notation

o QL O VA p QAN
v Fields scale similarly:

anA gﬁN)\Q As’\’)\ ﬁ'AcNAO
» 2 gauge transformations, collinear and ultrasoft

v and two types of Wilson lines:

12



Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

+  Decouple soft gluons from collinear via field redefinition &, (%) — Sp ()&l ()
%n e §<o>§n D, £®
»  Soft gluons do not of course fully disappear from every observable
»  Can form soft functions (matrix elements of soft Wilson lines)
+ Resummation: match and run

»  Write observable (e.g. Opy) as
<OQCD> and as H<O:LS’CET> X Cﬁnatch

»  Solve RG equations for O'scer i
»  Find C by 1-loop (or 2-loop) calculations on both sides

+ Powerful method

155



Factorization for threshold resummation

+ QAi(N): initial state soft+collinear radiation effects

» real+virtual J(N):qui(N)qu(N)X[Ai(N)Aj(N)Sij(N)Hij}

4 Gs”|n2” N 515 (N)
+ Sji(N): soft, non-collinear radiation effects
) Gsnlnn N

+ H: hard function, no soft and collinear effects

Cr
271'[)0)\
'QCMSCF 1

L s

A;(N) = exp In N {2X + (1 = 2X) 1n(1—2)\)}—|-..]

= exp n2N—|—..]
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Resummed cross sections

Sterman; Catani, Trentadue

Threshold-resummed Drell-Yan Joresum AN
cross section S R) / — 2V &(N)
dQ C 27TZ
: . 1 T Q% (1—=z)? d
Functions in exponent depend o(N) = exp|— / it / e Alas(p))
only on coupling 0 1—=z : p

6py (N,Q%) = go(Q?) exp [G%Y(Cf)]
A. Vogt GDy = INg(A)+g2(A) + asgs(A) + ..., A= GposIn N

6 T T T T I T T T T T T T T T T T T 12

10 -

Good convergence in exponent




Kikonal exponentiation

One loop vertex correction, in eikonal approximation

S
PN
o
S8
S
=
—
=
g

Two loop vertex correction, in eikonal approximation

ko 1 rrll D :

“@ “{ AO2</dkk2<p-k><p-k>>
Exponential series

N<M<L m{ﬁt@ @+ — ep [W<]

Yennie, Frautschi, Suura
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Resummation using path integrals

EL, Stavenga, White

Use textbook result

Sum of all diagrams = exp (Connected diagrams> f = ot dt(%d;2+p.A+..)

Write scattering amplitude as first-quantized path integral

M (p1,p2,{k}) = /DAS Dx(t) H[z) f1[As, z(t)] f2[As, z(8)] 514

x(t): path of charged
Eikonal vertices are sources for gauge bosons along line particle

& B

Connected
Disconnected

17



Non-abelian exponentiation: webs

o O B B

+ Not immediately obvious how this could work (the path integral must be a real
exponential), since

»  Source terms have non-abelian charges, so don't commute
»  External line factors are path-ordered exponentials

»  Nevertheless B g Gatheral; Frenkel, Taylor; Sterman

ZFDCD —cxD ZC_’zwz
D A -

. : . igey . EE-Si , Whit
+ Proven using replica trick (from statistical physics) e

+ (Generalized to multiple colored external lines Gardi, EL, Stavenga, White

Mitov, Sterman, Sung
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Tranverse momentum resummation

de Florian, Ferrara, Grazzini, Tommasini

+ Method: b-space resummation
- Gode: HqQ'T
+ Key part of resummation formula

M? 2 2
S.(M.b) = exp { [ S Aces(a?)) n g+ Bes(a)) }

»  first 3 orders of A, and 2 of B¢ are known. NNLL+NNLO accuracy.

150 B T T T T T T T T | T T T T | T T T T | T T T T 150 T T T T T T T T | T T T T | T T T T | T T T T
0.100 0.100
0.050 0.050 [
1:25/— C = 1.25 (— P —
NNLL+NLO 02 :
2020 NNLL+NLO 9029
R 0.010 | £ grgs Sl 0.010 | i
% = % C
42 0.005 - = 0.005 -
X X L
e - N < Q
& 075 — N N 0.002 — E 0% 0.002 —
& = \ \ 100 120 140 160 180 2007 & i 100 120 140 160 180 200-
o =| o) B A
o pp-H+X my=125 GeV i L pp-H+X my=125 GeV
< 0.50 o < 0.50 [ =3
Vs=14 TeV MSTW2008 | Vs=14 TeV MSTW2008
i |
L My, Mg variations L Q variations
0.25 0.25 1~ NUFETOR
I
OOO | | | | | | | | | | | | | | | | | | | | OOO 1 | | | | ‘ | | | 1 ‘ | | | ‘ ‘ T et
0 20 40 60 80 100 0 20 40 60 80 100
qr (GeV) ar (GeV)
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Higgs + (no) jets

+ Large logs due to exclusive binning: In(pr'¢°/m). Resummations using SCET

+ Accuracies have gone up
» NNLL+NNLO Stewart, Tackmann, Walsh, Zuberi
»  N3LL'+NNLO Becher, Neubert, Rothen
v and include careful assessment of uncertainties
+ Resummation also here enters also the realm where once only Monte Carlo roamed..

» how to combine resummed Higgs cross sections in different exclusive jet bins

Boughezal, Xiaohui, Petriello,

v “resummed theory covariance matrix”
Tackmann, Walsh

v reduction of factor 2 in theoretical uncertainties!

» automation @ NNLO+NLO! Becher, Frederix, Neubert, Rothen

20



N’LO Higgs from small and large x

Ball, Bonvini, Forte, Marzani, Ridolfi

+ So far, focus on large N
+ Interesting idea: use analyticity structure in complex N space
» From large N (large x) and N=1 (small x) resummation
v Sudakov In'N, BFKL 1/(N-1)
» Switch to (1-z)%/z E Mepnc enes

» Leads in Mellin space to
InN — w()(N)

v Removes branchpoint at N=0

+ Corrections beyond NNLO about 17% (m=125 GeV at 8 TeV)

2



3 .
N L6 resummation

Me”m Space anaIyS|S Catani, Cieri, de Florian, Ferrera, Grazzini

Bonvini, Marzani

» Include information from N=1 pole (~ next-to-soft terms)
»  For inverse Mellin transform, employ both Minimal Prescription and Borel prescription
v but not much difference
»  Nice progression, especially with exponentiated constants Eynck, EL, Magnea
e ma e

'\L""‘i"",~"',"'|"'|""

- - - No ] (- - - NLO
—-—- NNLO : L| —=—- NNLO
5[ NNLO+LL 3 5[ NNLO+LL
— — — NNLO+NLL | = = = NNLO+NLL
[| —-—- NNLO+NNLL ] [| —-—- NNLO+NNLL
NNLO+NNNLL NNLO+NNNLL
0 | FEP o | I | | | [ Pl O | EE B | I | | | [t [P
0.06 0.1 02 %563 0.5 1 2 3 0.06 0.1 2L 03 0.5 i 2 3
MR / My MR / My

» Code: ResHiggs and ggHigs
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N’LO Higgs and subleading powers

+ Large logs in N3LO are present in resummed expression

Anasthasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

1 Ny @y dq2
A n= exp / dz 2/ —zAc(ozS(q2) D lonil e
0

1— 2 M2 q

» Aand D known to 3rd order
+ Earlier result added also In(1-z) logs
+ Full N°LO result [Falko Dulat's tallk] realized full power of (1-z) threshold expanion

25



Generic large x behavior

+ For DY, DIS, Higgs, singular behavior when x— 1

nél o)
1 —=z

6(1 — x) [ ] Il
o

» delta-function: pure virtuals
»  plus distributions: resummable to all orders (N3LL for Higgs production now)
»  NLP logarithms, systematics are beginning to emerge
+ Method of regions allows their computation
1o il 7
v atleast to p=37
+ (Can they be predicted?

24



NLP logs in Drell-Yan at NNLO

EL, Magnea, Stavenga, White

+ Check NLP Feynman rules for NNLO Drell-Yan double real emission (only C¢? terms)

» Result at NE level, agrees with equivalent exact result

- o el 128 128
256 206 . o 320 '
—TD2(Z)+TIOg (1—z)—T10g(1—2) = [log’(l—z)
1024 1024 s
2 OTDM = 03 log®(1 — z) + 640log*(1 — 2)| ,

+ Next, 1 Real- 1 Virtual (only C¢? terms)
v virtual gluon not necessarily soft

v we redid exact calculation again, for comparison
25



Diagnosis: method of regions

Vernazza, Bonocore, EL, Magnea, Melville, White

+ Method of region approach, extended to next power Beneke, Smirnov
»  Allow treatment of (next-to-)soft and (next-to-)collinear on equal footing
+ How does it work?

»  Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by
appropiate scaling

Hool Bl oo e a2 o
Collinear : k; ~ Vs (1, A, >\2) :  Anticollinear : k; ~ Vs ()\2, X 1) : kéﬁf#%

p & 2

» expand integrand in A, to leading and next-to-leading order
»  but then integrate over all k1 anyway!

»  Treat emitted momentum as soft and incoming momenta as hard

Ky =02 0 ) pt = 3y/snf Pt = 2/snt

26



MoR

Vernazza, Bonocore, EL, Magnea, Melville, White

+ Findings
» Hard region (expansion in A?)
v reproduces already all plus-distributions, and some NLP logarithms
»  Soft region (expansion in A?)
v all integrals are scale-less, hence all zero in dimensional regularization
»  (anti-)collinear regions (expansion in A)
v only give NLP logarithms, once all diagrams in set are summed
+ Resllt:
»  the full KMy is reproduced, including constants
v Collinear regions give only NLP logarithms

v Clearly, one must first expand in ¢, then in soft momentum

+ For predictive power, need factorization

27



New: a factorization approach

Bonocore, EL, Magnea, Melville, Vernaza, White

+ Can we predict the log(1-z) logarithms? i

»  For both we need to factorize the cross section, as we did earlier

v H contains both the hard and the soft function (non-collinear factors)

+ Can we resum the log(1-z) logarithms to NLL, NNLL etc? &y

v J:incoming jet functions

+ Next, add one extra soft emission, as in Low's theorem. Let every blob radiate!

}ﬁ% 2 Del Duca, 1991

e

v Can we compute each new “blob + radiation?”, and put it together?

v New: radiative jet function

T e e ) — /ddy e”P=R) Y (0] @, (y,00) P(y) ju(0) | p)

28



Factorization approach: main formula

+ Upshot: a factorization formula for the emission amplitude

%
2]?7,—]{7)
ekl = 3 ( e

=1

+ Remarks

V.

D

R

DA

¢: G, —

for logs: to be contracted with cc amplitude

only process dependent terms are H and A

JuI1s needed at loop level, done

In dim.reg.: J is scale-less, so =1

29
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NE logs in factorization approach

Bonocore, EL, Magnea, Melville, Vernaza, White
% ; . ¥ arXiv:1503.05156
+ Now put it all together, contract with cc amplitude and on integrate over phase

space

»  Can do so in organized fashion

do = d®31p (Pup + Pnxrp) + d®3 nLpPLp

+ Result:

Find agreement with exact result, including constants:
four powers of logarithms

»  first steps toward resummation of NLP logarithms

»  could generalize “threshold expansion”
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Conclusions

+ Various resummation tools
»  factorization + resummation
»  straight exponentiation of soft effect (“webs”)
»  systematically improvable, as fixed order
+ Benefits:
» less uncertainty, better physics description
+ Progress
»  more exclusive cross sections
» understanding of analytic structure

»  next-to-soft logarithms

il



