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Introduction

ΛQCD ∼ 250 MeV,
A quark Q is heavy ⇔ mQ � ΛQCD .

mu ,md ,ms � ΛQCD ⇒ light quarks

mc > ΛQCD but not by much!

b quark only quark such that

ΛQCD � m� M(mW ,mZ ,mH ,mt)

b phenomenology crucially important at the LCH, from flavour physics, to Higgs
characterisation and measurements and as window to New Physics.

From a theoretical viewpoint we need better control on this kind of processes
which appear as both BSM signals and SM irreducible backgrounds.

Important examples: H and Z associated production.
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g → bb̄ splitting!

Main production mode: g → bb̄, but σ ∝ αS (η2) log(η2/m2
b), so when m2

b/η
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DGLAP equations:
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4F versus 5F scheme

4F scheme

g

g

b

b̄

b

b̄

H

× Doesn’t re-sum possibly large logs,
but it does have them explicitly

× Higher orders are computationally
more difficult

X Mass effects present at any order

X MC@NLO no problem

5F scheme

b

b̄
H

X Stabler predictions, re-summation of
IS large logs into b-PDF

X Higher order easily accessible

× pT of b and mass effects are pushed
to higher orders

× Implementation in MC depends on the
g → bb̄ splitting implemented
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Computing NLO observables

To compute a NLO observable we need:

dσ = dΦB

[
B(ΦB) +V(ΦB)

]
+ dΦB+1R(ΦB+1)

b

b̄

X +

b

b̄

X

g

+
b

b̄

X

g

V(ΦB) and
∫
dΦB+1R(ΦB+1) are separately soft (and collinear) divergent in 4d

∫
dΦB V(ΦB) +

∫
dΦB+1R(ΦB+1) is finite!

Need method to render the integrand finite for MC integration!
=⇒ Catani-Seymour Dipole formalism.
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Catani-Seymour Dipoles

CS-Dipoles

Exploit universal structure of soft- and collinear- singularities ⇒ in these limits:

|M ({pn}, pk ) |2 ∼
∑
ijk

Dijk = S

Dijk ∝ Vij,k ({pn}, pk )⊗ |M ({p̃n}) |2

If we also use this to factorise the PS ⇒ dΦB+1 = dΦ̃B ⊗ dΦ1 we can write:

dσ = dΦB

[
B(ΦB) +V(ΦB) + I(ΦB)

]
+dΦB+1

[
R(ΦB+1)−S(ΦB ⊗ Φ1)

]

I(ΦB) =

∫
dΦ1S(ΦB ⊗ Φ1)
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Dressing partons

b
b

g ⇒ dσ ∝ σ0
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0

dt

t
∝ αS log
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0

⇒ One additional emission
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⇒ Many sub-sequential emissions, with t1 > t2 > · · · > tn

Sudakov Form-Factor exponentiate these logs (DGLAP equations):

∆(Q2
0 ,Q

2) = exp

−
Q2∫

Q2
0

dt

t

∫
dzαS (t(z))Pab(z)

 ∼ exp

[
−CFαS log2 Q2

Q2
0

]

⇒ No emission probability!
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Matching to the Fixed Order

Leading-Order

At LO, we start with the B cross section:

dσ(Born) = dΦBB(ΦB)

︸ ︷︷ ︸
Unitarity of the PS

∆(Q2
0 ,Q

2) +

Q2
0∫

Q2

dΦ1

[
K(Φ1)∆

(
Q2

0 , t(Φ1)
)]

K(Φ1) =
∫
dzαS (t(z))Pab(z)

Note that R(ΦB ⊗ Φ1) ≤ B(ΦB)⊗K(Φ1)

introduce K̃(Φ1) = R(ΦB ⊗ Φ1)/B(ΦB) thus:

dσ(Born) = dΦBB

∆̃(Q2
0 ,Q

2) +

Q2
0∫

Q2

dΦ1

[
K̃(Φ1)∆̃

(
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∆̃(Q2
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2) = exp
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Q2∫

Q2
0

dΦ1K̃(Φ1)
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Matching to the FO (NLO)

Going MC@NLO

Can we do even better? First recall Catani-Seymour:

⇒ Identify the shower kernels with the CS dipoles:

S(ΦB ⊗ Φ1) =
∑
ijk

B(ΦB)⊗ Vijk (Φ1) = B(ΦB)⊗K(Φ1)

In this way we get

dσMC@NLO = dΦBB̃

∆(Q2
0 ,Q

2) +

Q2
0∫

Q2

dΦ1K(Φ1)∆
(
Q2

0 , t(Φ1)
)+ dΦB+1H(ΦB+1)

where

∆(Q2
0 ,Q

2) = exp

[
−

∫ Q2

Q2
0

dΦ1K(Φ1)

]
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LO-Merging

Basic idea

PS ⇒ re-sums logs in soft- collinear-region → jet evolution

ME exact at any give order and description of hard region → jet production

Separate jet production from jet evolution with jet measure QJ

ME populate hard region

PS populate soft- collinear-region

dσ = dΦNBN

∆N(µ2
N , t0) +

µ2
N∫

t0

dΦN+1

[
KN∆N

(
µ2
N , tN+1

)]
Θ(QJ − QN+1)


+ dΦN+1BN+1∆N (µN+1, tN+1) Θ(QJ − QN+1)
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Numerical results

Set-up

SHERPA + OpenLoops, LHC @ 14 TeV

4F

pp → Hbb̄ @ NLO

b jets with pT > 25 GeV

Jet algorithm: anti-kT ,
R = 0.5

Parton-level only, for now

µR,F ,Q = ŝ

5F (massive (but LO))

pp → H + 0j + 1j + 2j + 3j @
LO

b jets with pT > 25 GeV

Jet algorithm: anti-kT ,
R = 0.5. QJ = 20 GeV

Parton-level only, for now

0j-µR,F ,Q = mV ,

µR,F ,Q =
√

H2
T +

∑
m2

T

for j ≥ 1



The pT of the H/Z boson

Looking at the pT distribution of the H/Z ...

4F MC@NLO

5F MEPS@LO
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The pT of the H/Z boson

More pT

4F MC@NLO

5F MEPS@LO
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The pT of the H/Z boson

More and more pT

4F MC@NLO

5F MEPS@LO
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State of the art

What’s there

Many possibilities have been proposed:

GM-VFNS, ACOT scheme and variants, FONLL and many more...

Most of them only valid only for DIS

The others difficult to extend and very much process-dependent

What’s going to be there

Naive improvements: b are massive!

⇒ try to treat b massive everywhere

In this way we gain process-independence
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What do we need?

Recall that for a fixed order NLO calculation we need

dσ = dΦB[︸ ︷︷ ︸
This we have!

B+V] + dΦB+1R+ ︸ ︷︷ ︸
This we need..

dΦBI − dΦB+1S

And for a MC@NLO we also need S for the Sudakov form factor.

Massive dipoles already computed for a general QCD and EW radiation

Work in progress for the implementation in SHERPA

What to do with PDFs?
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