Higgs Sector of the Minimal Supersymmetric Standard Model with Complex Parameters

Shruti Patel Deutsches Elektronen Synchrotron, Hamburg

HiggsTools First Annual Meeting, Freiburg

April 17, 2015

Outline

- Supersymmetry
 - Introduction
 - Motivation
- The Minimal Supersymmetric Standard Model (MSSM)
- The MSSM with complex parameters
- Soft SUSY Breaking
- Higgs sector at tree level
- CP Violation (CPX) in the Higgs sector
- Phenomenology of the CPX Benchmark scenario
- Higgs Production in Complex MSSM
- Supersymmetric Higgs: SusHi
- Outlook

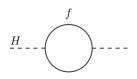
- Supersymmetry is a symmetry between fermions and bosons
- A group generator Q transforms fermions to bosons and vice versa

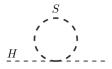

Q|fermion
angle = |boson
angleQ|boson
angle = |fermion
angle

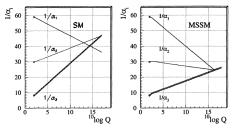
- SM particles have superpartners whose spin differs by half a unit
 - Scalar partners of SM fermions \rightarrow *sfermions*
 - Fermionic partners of SM bosons → *gauginos*, *Higgsinos*
- No SUSY partners ever been detected
 - \Rightarrow Supersymmetry is a broken symmetry

Supersymmetry: Motivation

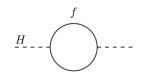
• The Hierarchy Problem

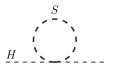



$$\begin{split} \Delta m_{H}^{2} &= -\frac{|Y_{f}|^{2}}{8\pi^{2}}[\Lambda_{UV}^{2} + ...] \quad \Delta m_{H}^{2} = 2\frac{Y_{s}}{16\pi^{2}}[\Lambda_{UV}^{2} + ...] \\ & \text{with } Y_{s} = |Y_{f}|^{2} \end{split}$$


Supersymmetry: Motivation

• The Hierarchy Problem


• Unification of Gauge Couplings at GUT scale All gauge couplings $\alpha_1,\,\alpha_2$ and α_3 converge at the GUT scale



Supersymmetry: Motivation

• The Hierarchy Problem

• Unification of Gauge Couplings at GUT Scale All gauge couplings α_1 , α_2 and α_3 converge at the GUT-scale

Dark Matter Candidate

The MSSM can provide a Weakly Interacting Massive Particle (WIMP)

The Minimal Supersymmetric Standard Model

- Simplest possible Supersymmetric theory (N=1)
- The fermion superpartners are squarks and sleptons
- The Higgs superpartners are the Higgsinos

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^{\dagger}	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\tilde{\nu} \ \tilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^{\dagger}	(1, 1, 1)
Higgs, higgsinos	H_u	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, +\frac{1}{2})$
	H_d	$\begin{pmatrix} H^0_d & H^d \end{pmatrix}$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$(1, 2, -\frac{1}{2})$

• The gauge bosons have corresponding winos, binos and gluinos

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8 , 1 , 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1 , 3 , 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

[Martin, arXiv:hep-ph/9709356]

The Minimal Supersymmetric Standard Model

- Two Higgs doublets H_u and H_d induce lepton, up- and down- type quark masses
- Particles mix with each other after EWSB
 - Two Charginos:

 $\{\tilde{W}^{\pm}, \tilde{H}_{u,d}^{\pm}\} \rightarrow \{\tilde{\chi}_{1,2}^{\pm}, \tilde{\chi}_{1,2}^{\pm}\}$

Four Neutralinos:

 $\{\tilde{B}, \tilde{W}^0_3, \tilde{H}^0_d, \tilde{H}^0_u\} \rightarrow \{\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4\}$

- (Pseudo)scalar fields mix to give h, H, A, H^{\pm}
- No particular SUSY breaking mechanism assumed:

 $\mathcal{L}_{\textit{soft}} \to \textit{most}$ general parametrization that keeps relations between dimensionless couplings unchanged

The MSSM with complex parameters

- $\bullet~105~\text{new parameters}\,+\,19$ from the SM
- These appear as masses, mixing angles and CP-violating phases
- Minimal flavour violation \Rightarrow 41 independent parameters
- The MSSM allows 14 of 41 parameters to take complex values
- This is not forbidden by a symmetry:

CP-symmetry is not a fundamental symmetry of nature • Complex parameters:

- Trilinear couplings A_f , $f = u, d, c, s, t, b \rightarrow A_f = |A_f| e^{i\phi_{A_f}}$
- Higgsino mass parameter $\mu
 ightarrow \mu = |\mu| e^{i \phi_{\mu}}$
- Gluino mass parameter M_3
- Soft SUSY breaking parameters from chargino and neutralino sectors, M_1 , M_2

- Where do the complex parameters enter the theory?
- \mathcal{L}_{soft} contains all possible gauge invariant and renormalizable couplings between SUSY particles

$$\begin{split} \mathcal{L}_{soft} &= -M_{\tilde{u}_L}^2 |\tilde{u}_L|^2 - M_{\tilde{u}_R}^2 |\tilde{u}_R|^2 - M_{\tilde{u}_L}^2 |\tilde{d}_L|^2 + \dots \quad \text{sfermion mass terms} \\ &- [Y_u A_u(\tilde{q}_L.H_2) \tilde{u}_R^* + h.c.] \quad \text{trilinear coupling breaking terms} \\ &- \frac{1}{2} (M_V \tilde{V} \tilde{V} + h.c.) \qquad \text{gaugino mass terms} \\ &- m_1^2 |H_1|^2 - m_2^2 |H_2|^2 - (m_{12}^2 H_1 H_2 + h.c.) \quad \text{Higgs mass terms} \end{split}$$

1

Higgs Sector at tree level

• The Higgs potential (including soft SUSY breaking terms) is:

$$V_{H} = m_{1}^{2} H_{1i}^{*} H_{1i} + m_{2}^{2} H_{2i}^{*} H_{2i} - \epsilon^{ij} (m_{12}^{2} H_{1i} H_{2j} + m_{12}^{2} H_{1i}^{*} H_{2j}^{*}) + \frac{1}{8} (g^{2} + g'^{2}) (H_{1i}^{*} H_{1i} - H_{2i}^{*} H_{2i})^{2} + \frac{1}{2} g'^{2} |H_{1i}^{*} H_{2i}|^{2}$$

— $m_i^2 = \tilde{m}_i^2 + |\mu|^2$: $\tilde{m_i}^2$ soft breaking parameters

• The Higgs doublets

$$H_{1} \equiv H_{d} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}}(\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix}$$
$$H_{2} \equiv H_{u} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}}(\phi_{2} + i\chi_{2}) \end{pmatrix}$$

 \Rightarrow The doublets can differ by a phase ξ

Higgs Sector at tree level

- 3 of the 8 d.o.f. give longitudinal component to gauge bosons \Rightarrow 5 physical Higgs bosons
- Mass terms: Bilinear terms in the Higgs potential

$$V_{\mathcal{H}|\textit{bil}} = \frac{1}{2} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \chi_1 \\ \chi_2 \end{pmatrix}^{\dagger} \mathcal{M}_{\phi\phi\chi\chi} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \chi_1 \\ \chi_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \phi_1^- \\ \phi_2^- \end{pmatrix}^{\dagger} \mathcal{M}_{\phi^{\pm}\phi^{\pm}} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix} + \dots$$

• CPX contained in 2x2 component of $\mathcal{M}_{\phi\phi\chi\chi}$:

$$\mathcal{M}_{\phi,\chi} = \begin{pmatrix} 0 & m_{12}^2 \sin \xi \\ -m_{12}^2 \sin \xi & 0 \end{pmatrix}$$

- CP-even: ϕ_1, ϕ_2 CP-odd: χ_1, χ_2
- V_H Minimization condition $\rightarrow \xi = 0 \Rightarrow$ No CP mixing at tree level

CPX in the Higgs Sector

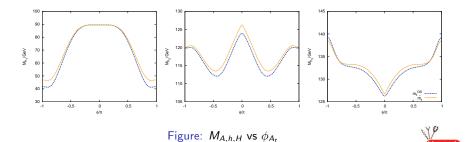
• The physical mass eigenstates are related to tree level neutral fields as

$$\begin{pmatrix} h \\ H \\ A \\ G \end{pmatrix} = \begin{pmatrix} -\sin\alpha & \cos\alpha & 0 & 0 \\ \cos\alpha & \sin\alpha & 0 & 0 \\ 0 & 0 & -\sin\beta & \cos\beta \\ 0 & 0 & \cos\beta & \sin\beta \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \chi_1 \\ \chi_2 \end{pmatrix}$$
$$\begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = \begin{pmatrix} -\sin\beta & \cos\beta \\ \cos\beta & \sin\beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

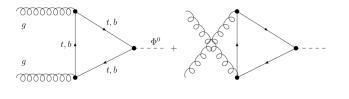
- CP-even: $(\phi_1, \phi_2) \rightarrow (h, H)$ CP-odd: $(\chi_1, \chi_2) \rightarrow (A)$
- No mixing at tree level
 - \Rightarrow Input parameters of the Higgs sector: $\tan \beta = \frac{v_2}{v_1}$, M_A

CPX in the Higgs sector

- CP phases in sfermion, gaugino, Higgsino sectors induce h, H, A mixing at loop level \Rightarrow Input parameters: tan β , $M_{H^{\pm}}$
- Large contributions from $m_f X_f$ term in the sfermion loops in Higgs sector $X_f \{u, d\} = A_f \mu^* \{\cot \beta, \tan \beta\}$
- Tools for Higgs physics at higher orders
 - Effective Potential Approach, CPsuperH [Lee,Carena,Ellis et al, arXiv:1208.2212]
 - up to leading log contributions at two loop level
 - Effects of imaginary parts at one loop
 - Feynman Diagrammatic Approach, FeynHiggs

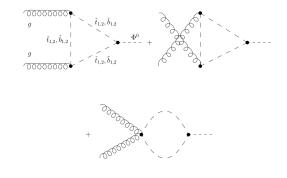

[Heinemeyer, Hollik, Rzehak, Weiglein]

– Full 1-loop contributions + $O(\alpha_t \alpha_s)$ corrections + additional contributions (phase dependence treated approximately)



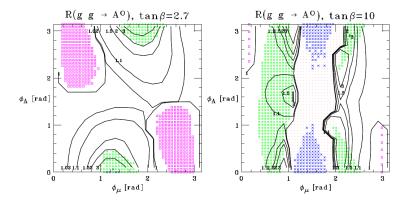
Phenomenology of CPX Benchmark scenario

- CPX Benchmark Scenario
 - \rightarrow parameters chosen to maximize effect of complex phases
- ullet In the MSSM Higgs sector CPX effects parametrized by ϕ_μ and $\phi_{A_{\rm f}}$
- ϕ_{μ} strongly constrained by measurements of electron and neutron EDMs
- For example values (tan β = 11 and M_{H[±]} = 140 GeV), neutral higgs masses show large variation with φ_{At} [Williams, Rzehak, Weiglein, arXiv:1103.1335]:



- Most important contribution to Higgs production: $gg \rightarrow \Phi^0$ ($\Phi^0 = h, H, A$) \Rightarrow Study of effects on $gg \rightarrow \Phi^0$ cross-section in the CPX scenario
- Complex phases alter the strength of the couplings of the Higgs to quarks (loop induced) and squarks
- These effects are manifest in the vertex strength of the $gg\Phi^0$ production channels [Dedes, Moretti, hep-ph/9909418]:

- Most important contribution to Higgs production: $gg \rightarrow \Phi^0$ ($\Phi^0 = h, H, A$) \Rightarrow Study of effects on $gg \rightarrow \Phi^0$ cross-section in the CPX scenario
- Complex phases alter the strength of the couplings of the Higgs to quarks (loop induced) and squarks
- These effects are manifest in the vertex strength of the $gg\Phi^0$ production channels [Dedes, Moretti, hep-ph/9909418]:


- Starting point: Recalculation of squared ME for $gg\to \Phi^0$ in the leading order for real and complex MSSM
- Automation tools: FeynArts \rightarrow FormCalc [MSSM.mod; MSSMCT.mod] \rightarrow FeynCalc
- Expressions from literature [Dedes, Moretti, hep-ph/9909418]

$$\begin{split} |\bar{\mathcal{M}}|^{2}_{gg \to h^{0}} &= \frac{\alpha_{s}^{2} M_{h_{0}}^{4}}{256\pi^{2}} \left| \sum_{q} \frac{\lambda_{h^{0}\bar{q}\bar{q}}}{m_{q}} \tau_{q} [1 + (1 - \tau_{q})f(\tau_{q})] - \frac{1}{4} \sum_{\tilde{q}} \frac{\lambda_{h^{0}\bar{q}\bar{q}}}{m_{q}^{2}} \tau_{\tilde{q}} [1 - \tau_{\tilde{q}}f(\tau_{\tilde{q}})] \right|^{2} \\ |\bar{\mathcal{M}}|^{2}_{gg \to H^{0}} &= \frac{\alpha_{s}^{2} M_{H_{0}}^{4}}{256\pi^{2}} \left| \sum_{q} \frac{\lambda_{H^{0}\bar{q}\bar{q}}}{m_{q}} \tau_{q} [1 + (1 - \tau_{q})f(\tau_{q})] - \frac{1}{4} \sum_{\tilde{q}} \frac{\lambda_{h^{0}\bar{q}\bar{q}^{*}}}{m_{\tilde{q}}^{2}} \tau_{\tilde{q}} [1 - \tau_{\tilde{q}}f(\tau_{\tilde{q}})] \right|^{2} \\ |\bar{\mathcal{M}}|^{2}_{gg \to A^{0}} &= \frac{\alpha_{s}^{2} M_{A_{0}}^{4}}{256\pi^{2}} \left| \sum_{q} \frac{\lambda_{A^{0}\bar{q}\bar{q}}}{m_{q}} [\tau_{q}f(\tau_{q})]^{2} - \frac{1}{16} \sum_{\tilde{q}} \frac{\lambda_{A^{0}\bar{q}\bar{q}^{*}}}{m_{\tilde{q}}^{2}} \tau_{\tilde{q}} [1 - \tau_{\tilde{q}}f(\tau_{\tilde{q}})] \right|^{2} \end{split}$$

where
$$\tau_{q,\tilde{q}} = \frac{4m_{q,\tilde{q}}^2}{M_{\Phi^0}^2}, q = t, b \text{ and } \tilde{q} = \tilde{t_1}, \tilde{t_2}, \tilde{b_1}, \tilde{b_2}$$

 $f(\tau)$ is the triangle integral C_0

• Effect of complex phases ϕ_A ($A_u = A_d = A$) and ϕ_μ on $R = \frac{\sigma_{LO}^{MSSM*}(gg \to A)}{\sigma_{LO}^{MSSM}(gg \to A)}$ [Dedes, Moretti, hep-ph/9909418]

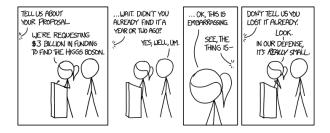
The coloured points are the exclusions from negativity of squark masses squared, the constraints by EDMs and Higgs boson and squark direct searches

Higgs sector of the Complex MSSM

Supersymmetric Higgs: SusHi

[Harlander, Liebler, Mantler arXiv:1212.3249]

- Fortran code for calculating
 - gluon fusion Higgs production
 - bottom-squark annihilation


in the 5FS

- Models included: SM, 2HDM, MSSM, NMSSM
- Used for LHC Higgs XSWG predictions
- $\bullet~\mbox{For gg}{\rightarrow}~\Phi^0$ SusHi contains
 - NLO QCD contributions from 3rd family of quarks
 - NNLO corrections due to top quark etc.
- Higgs masses and mixing matrices obtained from the link to FeynHiggs

Summary + Tasks

- Complex phases in the MSSM manifest in higher order corrections in the Higgs sector
- Effects on gluon fusion Higgs production cross-section
- Study of the gluon fusion Higgs production with external Higgs mixing
- Implementation of Complex MSSM in SusHi [Harlander, Liebler, Mantler arXiv:1212.3249]

BACKUP

Backup

Gauge Anomalies: Why we need two Higgs doublets

- In the presence of just one Higgs chiral supermultiplet, EW Gauge symmetry suffers a gauge anomaly
- Condition for cancellation of gauge anomaly: $Tr[T_3^2Y] = Tr[Y^3] = 0$, $Q_{EM} = T_3 + Y$
- These are satisfied in the SM by the known quarks and leptons
- A fermionic partner of a Higgs chiral supermultiplet must be a weak isodoublet with weak hypercharge $Y = \frac{1}{2}$ or $-\frac{1}{2}$
- In either case, such a fermion will make a non-zero contribution to the trace and result in an anomaly
- If there are two Higgs supermultiplets, one with each of $Y = \pm \frac{1}{2}$, the total contribution to the anomaly trace from the two fermionic members of the Higgs chiral supermultiplets vanishes by cancellation
- Further, only a $Y = \frac{1}{2}$ Higgs chiral supermultiplet has the Yukawa couplings to give masses to up-type quarks
- Only a $Y = -\frac{1}{2}$ Higgs chiral supermultiplet has the Yukawa couplings to give masses to down-type quarks and charged leptons

Backup

Sfermion sector at tree level

• The physical squark and charged leptons states \tilde{f}_1 , \tilde{f}_2 are mass eigenstates of a 2x2 complex mass matrix:

$$M_{\tilde{f}} = \begin{pmatrix} M_L^2 + m_f^2 + M_Z^2 \cos 2\beta (I_3^f - Q_f s_W^2) & m_f X_f^* \\ m_f X_f & M_{\tilde{f}_R}^2 + m_f^2 + M_Z^2 \cos 2\beta Q_f s_W^2 \end{pmatrix}$$

-cot β applies to up-type massive fermions f = u, c, t-tan β applies to down-type fermions $f = d, s, b, e, \mu, \tau$

- M_L^2 and $M_{\tilde{f}_p}^2$ are soft symmetry breaking parameters
- $M_{\tilde{f}}$ diagonalized by a 2x2 complex, unitary matrix $U_{\tilde{f}}$
- Bilinear part of the lagranian in the sfermion sector reads

$$\mathcal{L}_{ ilde{f}} = -(ilde{f}_1^\dagger, ilde{f}_2^\dagger) U_{ ilde{f}} M_{ ilde{f}} U_{ ilde{f}}^\dagger egin{pmatrix} ilde{f}_1^\dagger \ ilde{f}_2^\dagger \end{pmatrix}$$

Gluino sector at tree level

• Born lagrangian of the gluino is

$$\mathcal{L}_{ ilde{g}} = -rac{1}{2}ar{ar{g}} M_3 ar{g}$$

• M_3 is the gluino mass parameter

$$M_3 = |M_3|e^{i\phi_{M_3}}$$

 Gluinos only couple to coloured particles, so only enter Higgs sectors at two-loop level

CP-Phases

- 2 of the 14 complex phases can be rotated away
- Theoretically, the phases can be arbitrarily large, giving new sources of CPX for Sakharaov's conditions for baryon asymmetry in the universe
- Experimental limits on EDMs of atoms and neutrins places stringent constrains on the complex phases
- The constraints on third generation trilinear couplings are much weaker
- Higgsino phase ϕ_{μ} tightly constrained in conventions where ϕ_{M_2} =0

Backup

CPX Benchmark Scenario [Williams, Rzehak, Weiglein; arXiv:1103.1335]

- $m_t = 173.1 \text{ GeV}$
- $M_{SUSY} = 500 \text{ GeV} (= M_L^{onshell})$
- $\mu = 2000 {\rm ~GeV}$
- $|M_3| = 1000 \text{ GeV}$
- $M_2 = 200 \text{ GeV}$
- $|A_t^{onshell}| = |A_b| = 900 \text{ GeV}$
- $\phi_{A_t^{onshell}} = \phi_{A_b} = Q_{M_3} = \frac{\pi}{2}$
- $M_{H^\pm} < 1000 {
 m GeV}$

