

P. Govoni

- most of what follows is from a (CMS) user perspective
 - lists will be incomplete
 - please help me in adding pieces of information!

- there's a broad spectrum of new N(N)LO event generators, suitable for most of the first data taking physics programme (Moriond 2016)
- requests to improve the precision in specific cases
- for exclusive final states, the statistical uncertainty and all the statistically related experimental uncertainties — will rapidly decrease in 2016

- in these slides
 - some example cases from the Run1 analyses
 - my personal toy box of generators
 - some additional items for discussion

arXiv:1407.0558

- Search for a resonance peaking over a falling background
- Mass is measured to be $124.70 \pm 0.34 \text{ GeV} = 124.70 \pm 0.31 \text{ stat} \pm 0.15 \text{ syst GeV}$,
- Best-fit signal strength is 1.14 + 0.26 -0.23 = 1.14 + 0.21 stat +0.09 -0.05 sys +0.13 -0.09 theo.

inclusive measurement	Uncertainty
Source of uncertainty	in $\hat{\mu}$
Production cross sect. and branching fra	c. 0.11
Shower shape modelling (Section 9)	0.06
Energy scale and resolution	0.02
Other	0.04
All syst. uncert. in the signal model	0.13
Statistic	al 0.21
Tot	al 0.25

- categories Uncertainty systematic **Process** total stat û theo exp $1.12^{+0.37}_{-0.32}$ 0.34 0.30 0.13 0.09 ggH $1.58^{+0.77}_{-0.68}$ **VBF** 0.73 0.69 0.20 0.15 $-0.16^{+1.16}_{-0.79}$ VH 0.97 0.97 0.08 tŧΗ 2.2 2.1 0.4
- for exclusive final states non-negligible theo. uncertainties
- in the **VBF case**, the jet counting and CJV uncertainty (on the gluon-fusion contamination also!) play a big role

arXiv:1407.4222

- cross-section theoretical uncertainties:
 scale and pdf variations
- correction factor (unfolding) uncertainties:
 - comparison among several fully simulated samples
 (Powheg-Herwig, Minlo HJ, Minlo HJJ, Sherpa and Powheg-Pythia sample with MPI turned off)
 - increased or decreased contributions from the VBF, VH and ttH production within the measurement uncertainties

arXiv:1312.5353

also in the WW case, the uncertainty on the jet counting plays a large role

yield
uncertainties

Source	${ m H} ightarrow$	$q\overline{q} \to$	$gg \rightarrow$	Non-Z resonant	$\mathrm{V}\gamma^{(*)}$
Source	WW	WW	WW	WZ/ZZ	
Luminosity	2.2-2.6	_	_	2.2-2.6	2.2-2.6
Lepton efficiency	3.5	3.5	3.5	3.5	3.5
Lepton momentum scale	2.0	2.0	2.0	2.0	2.0
$\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$ resolution	2.0	2.0	2.0	2.0	1.0
Jet counting categorization	7–20	_	5.5	5.5	5.5
Signal cross section	5–15	_	_	_	_
$q\overline{q} o WW$ normalization	_	10	_	_	_
gg o WW normalization	_	_	30	_	_
WZ/ZZ cross section	_	_	_	4.0	_
$t\bar{t} + tW$ normalization	_	_	_	_	_
$Z/\gamma^* { ightarrow} \ \ell \ell$ normalization	_	_	_	_	_
W + jets normalization	_	_	_	_	_
MC statistics	1.0	1.0	1.0	4.0	20

 the choice of the generator used to model the main bkg shape (WW) brings some differences as well

effect on the result of the WW samples choice

$\overline{ q \overline{q} o WW}$	95% CL limits on $\sigma/\sigma_{\rm SM}$	Significance	$\sigma/\sigma_{\rm SM}$
generator	expected / observed	expected / observed	observed
MADGRAPH (default)	0.4 / 1.2	5.2 / 4.0 sd	0.76 ± 0.21
MC@NLO	0.4 / 1.2	5.3 / 4.2 sd	0.82 ± 0.24
POWHEG	0.4 / 1.2	5.1 / 3.9 sd	0.74 ± 0.21

- measure the Higgs XS off-shell and extract the width by comparing to the on-shell XS
 - on-shell: H > ZZ peak, ggZZ and qqZZ backgrounds
 - off-shell: qqZZ, H > ZZ tail, ggZZ and its interference with Higgs
- enhance signal over background with matrix-element based discriminants (e.g. MELA)
- so far this is basically a counting experiment (precision on rates matters)
- a limit is observed on the total width of Γ_H < 22 MeV at a 95% CL, which is **5.4 times the** expected value in the SM.

 better precision in the off-shell region (NNLO qqZZ, NLO ggZZ, NLO qqZZ EWK) would be beneficial

CMS		
Theory uncertainties		
pdf, gluon-gluon initial state	6-11	
pdf, quark-quark initial state	3.3-7.6	
QCD scale, gluon-gluon initial state (ggZZ)	7+shape	
QCD scale, quark-quark initial state (qqVV)	5.8-8.5+shape	
$gg \rightarrow ZZ$ k-factor uncertainty	10	
Underlying event and parton shower	6	

	ATLAS
OS higher orders gg > H > VV	20-30%
OS scale gg > H > VV	10-20%
gg > VV interference	30%
gg > VV uncorr. interference	30%
OS > VV QCD scale and PDF	5-10%

scaling QCD scale factor from signal to background

- very low statistics, spread out across several final states
- LO signal production
- several backgrounds from multi-boson + jets, ttbar + jets
- contamination from ggH+many jets in the γγ final state, known with PS precision
- large increase of XS expected for 13 TeV, the statistical uncertainty will decrease quickly

arXiv:1408.1682

	Rate ur		
Source	Signal	Backgrounds	Shape
NLO scales and PDF	9.7–14.8%	3.4-14.7%	No
MC modeling	2.3–5.1%	0.9–16.8%	Yes
Top quark p_{T}		1.4–6.9%	Yes
Additional hf uncertainty (H \rightarrow hadrons)		50%	No
H contamination (H \rightarrow photons)	36.7–41.2%		No
WZ (ZZ) uncertainty (H \rightarrow leptons)		22% (19%)	No

- moving to NLO generation for 13 TeV data analysis, merging 0 and 1 jets
- the **ttW background** is estimated from simulation, NLO by now
- the ttyy and tty backgrounds need better understanding

arXiv:1504.00936

- search for high mass additional Higgs-like resonances (VV decay channels)
 - proper treatment of interference
 - analysis performed inclusively and after VBF requirements
 - high mass means boosted V regime
- the W-tagging uncertainty comes from residual disagreement between data and MC in the fat jet tagging (half stats, half simulation)

	and the second s
CICIO	LINGARTOINTIAG
Sicilar	uncertainties
orginal	arroortairitioo

Syst. uncertainty	ggH	VBF	ggH	VBF
Luminosity	2.6%	2.6%	2.6%	2.6%
PDF gg	9.1%*	-	-	9.1%*
PDF qq	-	5%*	-	5%*
ggH0In	26%	-	-	-
ggH2In	6%	-	19%	-
Int ggH	10%	-	10%	-
Int vbfH	-	10%	-	10%
Trigger eff.	1%	1%	1%	1%
Lepton eff.	2%	2%	2%	2%
B-Tagging	0.5%*	0.2%*	0.5%*	0.2%*
W-Tagging	9.3%	9.3%	9.3%	9.3%
Lepton Scale	2.1%*	1.5%*	3.5%*	1.8%*
Jet Scale (JES)	3.9%*	4.4%*	5.0%*	4.5%*
Jet Res (JER)	2.5%*	3.5%*	8.0%*	10.6%*

D. de Florian, G. Ferrera, D. Tommasini, M. Grazzini (2011)

- ▶ HRes combines the NNLO calculation in HNNLO with the small p_T -resummation implemented in HqT
- ► Three decay channels of the Higgs boson implemented:

Hayk Sargsyan

heavy quark masses included as well

- multi-purpose MC event generator for the Simulation of High-Energy Reactions of PArticles in collisions
- multi-jet merging at NLO
 - basic idea: towers of MEs with increasing jet multiplicity (at NLO)
 - combine them into one sample, remove overlap/double-counting maintaining NLO and LL accuracy of ME and PS
 - can be further supplemented with LO simulations
- finite quark masses included in the calculations

- backgrounds description as relevant as signal one for precision measurements
- W+W- + 0,1 jets at NLO: main background to H > WW searches
- ttbar + jets at NLO: crucial for ttH analyses

- automated calculation
 - given a Lagrangian, transform it in a set of rules used in computations
 - **NLO specific information** calculation automated as well (1406.3030)
- NLO matching to Pythia8, Herwig++, Pythia6(Q2), Herwig6, and Pythia6(pT, ISR only)
- Scale and PDF uncertainties without recomputation
- NLO multi-parton merging fully automated, with both FxFx and UNLOPS (the latter for Pythia8 shower only)
- Loop-induced processes

1209.6215, 1211.7278

arXiv:1405.0301

CMS Z+jets analysis

- different jet multiplicities can be merged
- NLO automatisation is very powerful in particular for BSM models
- examples: H with various J^P configurations, HH in SM, gg \rightarrow HH in 2HDM, weak corrections to ttH, $X_{0\pm}$, bbH, EFT models, ...
- uncertainties related to merging and matching scales are under study

SM Higgs boson

ggH generation, with several CP states of the H boson

- merging without merging scales, for processes of production of a massive colourless system in association with one jet (H, Z, W, H+Z)
- Extension to NLO of CKKW (Catani, Krauss, Kuhn, Webber, 2001)
- The scale matching the PS is set to the last clustering scale for Born and Virtual contributions, and to the second last clustering scale for the Real (i.e. is **not an externally imposed scale**)

Hamilton, Nason, Zanderighi 2013, Luisoni, Nason, Oleari, Tramontano 2013 Karlberg, Re, Zanderighi 2014

- extend the MiNLO framework in such a way that a true NNLO+PS generator is built, without the use of any matching scales
- In the example of Higgs production: the MiNLO HJ generator can be promoted to a NNLO
 +PS generator by simply reweighting the events with the factor:

$$\frac{\mathrm{d}\sigma^{(\mathrm{NNLO})}}{\mathrm{d}y_{\mathrm{H}}} / \frac{\mathrm{d}\sigma^{(\mathrm{HJ})}}{\mathrm{d}y_{\mathrm{H}}} = 1 + \mathcal{O}(\alpha_S^2)$$

- Intrinsic uncertainty: in which region of phase space the reweighting is done
- so far applied to HJ and Drell-Yan, extension to all processes under development

- the UNLOPS scheme is implemented in Pythia8
- adds the parton shower and performs matching and merging of QCD NLO samples
- matched to the powheg-box output as well
- introducing UN²LOPS scheme for matching **NNLO calculations**

arXiv:1407.3773

- Toolkit for High Energy Physics Event Generation
- Current release: Dedicated approaches to NLO matching
- Various Higgs processes and backgrounds available: gg → h, VBF, VH, VV.
 - Including NLO matched Higgs to QQ⁻ decays.
 - hh available at LO with full mass dependence
- Herwig++ 3.0 faces change in paradigm: Automated NLO × Two showers × Two matching algorithms.
- Concerning the Higgs simulation HJets++ will be released along with Herwig++ 3.0 →
 EW Higgs plus jets production at NLO QCD

third hardest jet
EWK H + 3jets
generation with
NLO QCD
precision

- improve S/B ratio in bins with different bkg compositions
- isolate VBF H production (the ggH one is a contamination in this case)
- analysis selection based on MVA tools, hence need of precise events generation for ggH + jets, VBFH (+jets), main backgrounds

systematic uncertainties related to jet binning have to be treated properly

calculations

new jet-veto variables dependent on *y* that can be resummed at the same level of pti

1308.4634, 1206.4998

- differential predictions in form of histograms
- EW corrections at percent level (5-10% in VBF H i.e. comparable to QCD ones)
- Relative EW corrections rather independent of PDF, QCD scale and collider energy
- assume approximate factorisation of corrections:
- use differential reweighting event by event
- HAWK, VBFNLO implement QCD and EWK corrections

a (not complete) toy box

	0-jet	1-jet	2-jet	3-jet	4-jet	5-jet	finite
powheg gg H	NLO	LO	PS				Χ
NNLOPS gg H	NNLO	NLO	LO	PS			Χ
minlo' gg HJ	NLO	NLO	LO	PS			
minlo gg HJJ	approx LO	approx LO	NLO	LO	PS		
mg5nlo gg H	NLO	NLO	NLO	LO	PS		
powheg VBF H	- 500		NLO	LO	PS		
mg5nlo VBF H	0 8		NLO	LO	PS		
powheg VBF HJ	1	THE PERSON	- 6	NLO	LO	PS	
mg5nlo VBF HJ		-01	30	NLO	LO	PS	
powheg pp > VH	NLO	LO	PS	0 1 L			
minlo pp > VHJ	NLO	NLO	LO	PS	9		
powheg gg > ZH	LO	PS			,		
mg5nlo pp > VH	NLO	NLO	maybe NLO	PS			
powheg tt H	NLO	LO	PS				
mg5nlo tt H	NLO	NLO	maybe NLO	PS			
mg5nlo bb H	NLO	LO	PS				
sherpa gg H	NLO	NLO	NLO	NLO?	LO?	PS	
sherpa gg H + interf.	NLO	LO	LO	PS			Χ
sherpa tt H	NLO	NLO	LO	LO	PS		
sherpa VBF H	-	-	NLO	LO	LO	PS	
sherpa VH, H > VV	NLO	NLO	LO	PS			

- leit motiv: indirectly access new physics through precise measurements
- implementations in event generators exist based on FeynRules
 - Madgraph5, Sherpa, Powheg
 - MCFM, gg2VV, MC@NLO
 - eHDECAY for the Higgs decay
- Use of Run2 requires MC at NLO!
 - NLO tools (MCFM/POWHEG and MC@NLO) under study
 - improved uncertainties, to match the reduced statistical uncertainty in data

CMS projections

NLO MCFM & Powheg test

V. Sanz slides, december 2014

- HPAIR matrix elements and mg5nlo for XS calculation
- mg5nlo, herwig++ for events generation
- LO + HEFT for gluon fusion, NLO for other production mechanisms
- top mass effects are relevant (10%), therefore a full NLO calculation would be useful

• **BSM** di-higgs available for the 2HDM case in mg5nlo via the NLOCT package (1406.3030)

high precision WW background

- crucial for the HWW analysis, where the ttbar production is reduced with jet veto
- high precision very important also for higgs width determination from off-shell measurement
- NNLO QCD: inclusive cross-section + fully diff w/ off-shell effects and W decay

NLO EWK: ewk corrections + additional γγ-induced production

- the key to understand the electroweak symmetry breaking in the high energy regime
- after the Higgs boson discovery, the BSM effects expected to be small
- exact LO calculation and events generation known since long ago (0801.3359)
- NLO calculations: available for most of all the signals, for some of the bkg only
- **EWK** corrections: unknown, expected to be large
- resonant and non-resonant contributions included
- spin correlations in the decays included

- NLO QCD VBS HH production available
- calculations with additional jets, merged to 0 jets, do not exist: relevant for CJV
- BSM parameterisations available
- tri-boson production might be important as well

- extremely active field, (not only) for the high energy frontier
 - increase signal statistics
 - extend discovery reach

e.g.

- PU reduction
- q/g separation
- color flow

- e.g.
- cleaning jets from PU and nonperturbative effects
- particle ID in boosted jets

- tools which need a theoretical understanding
- "If we see evidence of new physics how do we convince the world (and ourselves) that we're right and that its not a feature of the tagger" (E. Thompson)
- in contrast to what discussed before, the showering and hadronisation scheme matter here

- parametric simulation particle-matter interaction
 - a lot of (reasonable) approximations
- realistic models of detectors
 - need a very close interaction with the experiments
 - easy to understand and modify C++ code
 - detailed can be added or removed depending on the analysis needs
- preliminary physics studies can be performed in short time (e.g SnowMass)
- can be used in parallel with full detector simulation
- impact of pile-up on isolation, jet structure, multiplicities ...

- 12 Billion events generated for run I
- 5 Billion events will generated in 2015 (at the speed of the order of 1 Billion events per month)
- the integration in the CMSSW of generators allows for a better control of parameters consistency and proper usage of the tools, and seamless running
- despite best efforts, there's a delay between the release of a code and its use
- a documented **versioning** of generation codes helps a lot in keeping track of the integration in the CMSSW releases
- (simpler is better)

conclusions

- there's a broad spectrum of new N(N)LO event generators, suitable for most of the first data taking physics programme (Moriond 2016)
- requests to improve the precision in specific cases
- the statistical uncertainty and all the statistically related experimental uncertainties will rapidly decrease in 2016
- experiments follow up very closely the phenomenological news
- they exploit more and more sophisticated data treatment
- the close interaction granted by HiggsTools (and the Higgs Cross Section Working Group) is extremely beneficial
- the envelope of all the available tools yields the **theoretical uncertainty** for the measurements, a common grounding is of paramount importance
- need of properly covering the backgrounds as well with the same systematic approach used for the signal