The Higgs sector of the

Next-to-Minimal Supersymmetric Standard Model

U. Ellwanger

Supersymmetry leads always to an extended Higgs sector:

MSSM: 2 SU(2) doublets H_u , H_d (+ higgsinos Ψ_u , Ψ_d) where the vev of H_u generates up-type quark masses $(m_{top} = h_{top} v_u)$, the vev of H_d generates down-type quark and lepton masses masses $(m_{bottom} = h_{bottom} v_d, m_{\tau} = h_{\tau} v_d)$.

 v_u and v_d contribute to the W and Z boson masses:

$$M_W^2 = \frac{g_2^2}{2}(v_u^2 + v_d^2)$$
 $M_Z^2 = \frac{g_1^2 + g_2^2}{2}(v_u^2 + v_d^2),$

but the ratio $\frac{v_u}{v_d} \equiv \tan \beta$ is model dependent.

Problem: The mass of 125 GeV of the SM-like Higgs boson is not easy to explain (the tree level potential gives $H_{SM} < M_Z$); large unnatural radiative corrections are required to explain $H_{SM} \sim$ 125 GeV.

NMSSM: An additional gauge singlet S with a Higgs-to-Higgs coupling $\lambda S H_u H_d$ in the superpotential (\rightarrow Yukawa coupling $\lambda S \Psi_u \Psi_d$ to higgsinos)

- whose vev $\langle S \rangle = v_S$ generates masses for the higgsinos (the μ -term of the MSSM)
- allows to explain $H_{SM}\sim$ 125 GeV at tree level, no large radiative corrections are required
- Many parameters in the Higgs sector: dimensionless couplings λ , κ ; trilinear couplings A_{λ} , A_{κ} ; v_S , tan β

The NMSSM Higgs spectrum (assuming CP-conservation):

- a 3 \times 3 mass matrix for 3 neutral CP-even states H_i
- a 2 \times 2 mass matrix for 2 neutral CP-odd states A_i
- a charged Higgs H^{\pm}

Approximate (!) mass eigenstates:

- a neutral CP-even state H_{125} with a mass of \sim 125 GeV, and couplings similar to (but not necessarily equal to) a SM Higgs boson
- a "heavy" nearly degenerate SU(2) multiplet $H/A/H^{\pm}$ (like in the MSSM), with mass \gtrsim 300 GeV (unless contributions from H^{\pm} to $b \rightarrow s + \gamma$ happen to be cancelled by SUSY contributions)
- mostly singlet-like neutral CP-even and CP-odd states H_S , A_S with model dependent masses, possibly below 125 GeV; hardly constrained by previous experiments (LEP)

Note:

- M_{H_S} somewhat below $M_{H_{SM}}$ ($M_{H_S}\sim 80-120$ GeV) helps to shift upwards the mass of H_{SM} to ~ 125 GeV through mixing
- A (very) light A_S is natural; a possible pseudo-Goldstone boson of an approximate Peccei-Quinn symmetry

Couplings to W- and Z-bosons:

- For all extensions of the Higgs sector involving only SU(2) doublets and singlets, the ratios g_W/g_Z of the couplings of all neutral Higgs states to W/Z bosons are given by $g_2/\sqrt{g_1^2+g_2^2}$, i.e. SM-like!
- Def.: EW gauge couplings $g_i \equiv g_{W_i}$ for each neutral Higgs state $H_i = H_{125}, \ H, \ H_S$
- \rightarrow Measurements of the couplings of H_{125} to W and Z from production and decays can be combined to improve the measurement of g_{125}
- \rightarrow If $g_{SM}=$ coupling of the SM Higgs boson: the g_i satisfy the sum rule

$$g_{125}^2 + g_H^2 + g_{H_S}^2 = g_{SM}^2$$

 \rightarrow Since the measured value of g_{125}^2 (incl. error bars) is close to g_{SM}^2 , no large values of g_H^2 or $g_{H_S}^2$ (induced by mixing) are allowed

Couplings to Fermions (top- and bottom quarks):

- if the mixings $H_{125}-H_S$ and $H_{125}-H$ are small, all couplings of H_{125} are nearly SM-like
- the couplings of H/A to b-quarks can be strongly enhanced; reason:

$$m_b = h_b \ v_d o h_b = \frac{m_b}{v_d} \gg \frac{m_b}{\sqrt{v_u^2 + v_d^2}}$$
 if v_d is small \leftrightarrow if $\tan \beta = \frac{v_u}{v_d}$ is large

For the coupling of H_{125} to b-quarks, a large Yukawa coupling h_b is compensated by a small H_d component of H_{125} ; $g_{H_{125}b\bar{b}}$ remains SM-like

For H/A, the H_d component is large $\to g_{H/A-b\,\overline{b}}$ can be very large!

— the singlet states H_S , A_S couple only through mixing with H_{125} and/or H/A. The coupling to b-quarks can be very small (if light)

Couplings to $\gamma\gamma$:

SM: induced by top quark/ W^{\pm} loops:

NMSSM: the NMSSM-specific Yukawa coupling $\lambda S \Psi_u \Psi_d$ generates an additional H_S - γ - γ coupling from a loop of charged higgsinos $\Psi_u \Psi_d$; the impact depends on λ and the mixing of H_S with the other Higgs states

Trilinear Higgs couplings:

Originate from the NMSSM-specific term λSH_uH_d in the superpotential; can be large notably for couplings of the mostly singlet-like states H_S , A_S to H/A and H_{125} !

Direct production of the extra Higgs states:

1) Gluon fusion:

Depends on the coupling of H_i to the top quark (possibly through mixing)

 \rightarrow the production cross section is always below the one of a SM Higgs boson (of the same mass)

2) VBF and associate production with a W/Z boson:

Depends on the coupling of H_i to the W/Z bosons (possibly through mixing)

 \rightarrow production cross section always below the one of a SM Higgs boson (of the same mass)

3) Ass. production with b-quarks:

 \rightarrow Can be strongly enhanced for H/A (and for heavy H_S/A_S through mixing) if h_b is large (large tan β)

4) Ass. production with *t*-quarks:

Not enhanced w.r.t. a SM Higgs boson

Decays of the extra Higgs states

The branching fractions can deviate considerably from those of a SM-like Higgs boson of the corresponding mass. In particular

— the branching fraction into $\gamma\gamma$ can be strongly enhanced. Not (necessarily) since the loop-induced coupling is much larger, but since

partial widths into "standard" final states — and hence the total width —

are small:

$$BR(H_i \to \gamma \gamma) = \frac{\Gamma(H_i \to \gamma \gamma)}{\Gamma_{Tot}}$$

For $M_H \lesssim 150$ GeV: Γ_{Tot} is dominated by $H \to b \bar b$ \to The $BR(H_i \to \gamma \gamma)$ becomes large if the coupling $H_i \, b \, \bar b$ is small (notably for $M_{H_S} < 125$ GeV, NOT ruled out by LEP!)

For $M_H \gtrsim 150$ GeV: The $BR(H_i \to \gamma \gamma)$ becomes large if all couplings to $b\, \bar b$, $t\, \bar t$ and to gauge bosons are small; happens easily for H_S , A_S !

Higgs-to-Higgs decays can be relevant, even dominant!

Since the couplings of Higgs bosons to gauge bosons and SM Fermions are quite small (and/or the decays are kinematically suppressed), Higgs-to-Higgs decays can be dominant if kinematically allowed and if the NMSSM-specific Higgs-to-Higgs coupling λ is not too small.

But: exotic decays of H_{125} with too large branching fractions would reduce the observed decays (i.e. signal rates) into the SM-channels below an acceptable level $\to H_S$, A_S should better have masses above \sim 60 GeV (or λ is really small).

Still: Many possibilities for

$$H_i \to H_j + H_k \to bb + \gamma\gamma, \ bb + \tau\tau, \ bb + WW, \ \tau\tau + \tau\tau \dots$$

and even

$$H o HH o HHH$$
 cascades, incl. $H_i \leftrightarrow A_i$

see, e.g., S.F. King et al., arXiv:1408.1120 (PRD)

Tasks

- 1) Scan the parameter space of the Higgs sector of the NMSSM which is consistent with
- the measured signal rates of H_{125} in all production and decay channels (very important!)
- the (present) absence of signals for additional Higgs bosons with masses below 125 GeV (LEP, searches for $H \to \gamma \gamma$ by ATLAS) or above 125 GeV ($H/A \to \tau \tau$, $H \to \gamma \gamma$ by ATLAS and CMS) (Note: the MSSM is a subspace of the NMSSM parameter space!)
- 2) Identify, for the various viable ranges of Higgs masses and decays, incl. Higgs-to-Higgs decays, the most promising

Signal rate = (Production cross section) \times (Branching fraction)

for the run II of the LHC.

"Most promising" depends strongly on the final state (the corresponding SM background); many studies incl. simulations are necessary!

Higgs bosons from SUSY particle decay chains

(With A. M. Teixeira, 1406.7221 and 1412.6394)

Higgs production from sparticle decay chains like

$$\chi_2^0 \to \chi_1^0 + H$$

is a well-known possibility, where

 χ_1^0 is the "LSP" (lightest Supersymmetric particle, neutralino₁),

 χ_2^0 the "NLSP" (next-to-lightest Supersymmetric particle, neutralino₂).

Usually χ_1^0 leads to missing transverse energy

Consider the kinematics of $\chi_2^0 \to \chi_1^0 + H$ or, more generally, NLSP \to LSP + X:

where "X" decays into SM particles; typically: X= a Higgs boson

If $M_{NLSP}-(M_{LSP}+M_X)\ll M_{NLSP}$, the energy E_{LSP} transferred from the NLSP to the LSP is proportional to the ratio of masses: $\frac{E_{LSP}}{E_{NLSP}}\simeq \frac{M_{LSP}}{M_{NLSP}}$

 \rightarrow If the LSP is light and $M_X \sim M_{NLSP} - M_{LSP}$, little E_T^{miss} energy is transferred to the LSP; E_{NLSP} is carried away by the Higgs

In the NMSSM (with additional singlet-like Higgs states and a singlet-like neutralinos), the neutralino₁ can be mostly "singlet-like"; then

- all sparticle decay cascades contain a Higgs boson (possibly: H is an additional mostly singlet-like Higgs boson below 125 GeV)
- the missing energy in sparticle decay cascades is strongly reduced
- → lower bounds on squark/gluino masses from run 1 at the LHC are considerably reduced

The only LHC allowed scenario with all sparticle masses below ~ 1 TeV!

— searches for Higgs pairs (+ jets) at 13/14 TeV are the relevant search channels for Supersymmetry; two Higgs bosons per sparticle pair production, a new signature to look for!

At the run II of the LHC

many unexpected (exotic) phenomena

are possible in the NMSSM!