Results

Conclusions

Heavy flavor corrections to deep-inelastic scattering at three loops

A. Behring

DESY

April 17th, 2015

based on [J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock '14 [Nucl. Phys. B 886 (2014) 733]]

and

[J. Ablinger, A. Behring, J. Blümlein, A. De Freitas,

A. von Manteuffel, C. Schneider '14 [Nucl. Phys. B 890 (2014) 48]]

Hadronic tensor: $W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$

Structure functions contain light and heavy quark contributions. Motivation for NNLO heavy quark corrections to DIS:

• Precision determinations of α_s and m_c require heavy flavor corrections at $\mathcal{O}(\alpha_s^3)$ due to the precision of the world data.

Heavy flavor contributions to deep-inelastic scattering

Hadronic tensor:
$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$

Heavy flavor contributions to deep-inelastic scattering Hadronic tensor: $W_{\mu\nu} = (...)_{\mu\nu} F_L(x, Q^2) + (...)_{\mu\nu} F_2(x, Q^2)$ Structure functions: $F_2(x) = x \sum_j \mathbb{C}_{2,j}(x) \otimes f_j(x)$ Wilson coefficients perturbative Non-perturbative

Heavy flavor contributions to deep-inelastic scattering

Hadronic tensor:
$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$

Structure functions: $F_2(x) = x \sum_{j} \mathbb{C}_{2,j}(x) \otimes f_j(x)$
Wilson coefficients PDFs
perturbative non-perturbative

x- and N-space are connected by a Mellin transformation:

$$M[f(x)](N) = \int_0^1 dx \, x^{N-1} f(x)$$

Representation simplifies in Mellin space.

Heavy flavor contributions to deep-inelastic scattering

Hadronic tensor:
$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$

Structure functions: $F_2(N-1) = \sum_j \mathbb{C}_{2,j}(N) \cdot f_j(N)$
Wilson coefficients PDFs
perturbative non-perturbative

x- and N-space are connected by a Mellin transformation:

$$M[f(x)](N) = \int_0^1 dx \, x^{N-1} f(x)$$

Representation simplifies in Mellin space.

Heavy flavor contributions to deep-inelastic scattering $W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$ Hadronic tensor: Structure functions: $F_2(N-1) = \sum \mathbb{C}_{2,j}(N)$ $f_i(N)$ Wilson coefficients: $\mathbb{C}_{2,i}(N) = C_{2,i}(N) + H_{2,i}(N)$ massless heavy-flavor Wilson coefficients Wilson coefficients NNLO: [Moch, Vermaseren, Vogt '05]

Heavy flavor contributions to deep-inelastic scattering $W_{\mu\nu} = (\dots)_{\mu\nu} F_1(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$ Hadronic tensor: Structure functions: $F_2(N-1) = \sum_{i} \mathbb{C}_{2,j}(N) \cdot f_j(N)$ Wilson coefficients: $\mathbb{C}_{2,i}(N) = C_{2,i}(N) + |H_{2,i}(N)|$ For $Q^2/m^2 \ge 10$ the heavy flavor Wilson coefficients factorize: [Buza, Matiounine, Smith, Migneron, van Neerven '96] $H_{2,j}(N) = \sum A_{ij}(N) C_{2,i}(N)$ Heavy flavor Wilson coefficients: massive operator matrix massless elements (OMEs) Wilson coefficients

LO: [Witten '76; Babcock, Sievers '78; Shifman, Vainshtein, Zakharov '78; Leveille, Weiler '79; Glück, Reya '79; Glück, Hoffmann, Reya '82] NLO: [Laenen, van Neerven, Riemersma, Smith '93; Buza, Matiounine, Smith, Migneron, van Neerven '96; Bierenbaum, Blümlein, Klein '07, '08, '09]

Heavy flavor contributions to deep-inelastic scattering

Hadronic tensor:
$$W_{\mu\nu} = (\dots)_{\mu\nu} F_L(x, Q^2) + (\dots)_{\mu\nu} F_2(x, Q^2)$$

Structure functions:
$$F_2(N-1) = \sum_j \mathbb{C}_{2,j}(N) \cdot f_j(N)$$

Wilson coefficients: $\mathbb{C}_{2,j}(N) = C_{2,j}(N) + H_{2,j}(N)$

For $Q^2/m^2 \ge 10$ the heavy flavor Wilson coefficients factorize: [Buza, Matiounine, Smith, Migneron, van Neerven '96]

Heavy flavor
$$H_{2,j}(N) = \sum_{i} A_{ij}(N) C_{2,i}(N)$$

Wilson coefficients:

OMEs A_{ij} also essential to define the variable flavor number scheme \rightarrow describe transition from n_f to $n_f + 1$ massless quarks

Wilson coefficients in terms of OMEs

Conclusions

Status of Wilson coefficients and OMEs

Moments for F2: $N=2\ldots 10(14)$ \checkmark [Bierenbaum, Blümlein, Klein, '09]

Massive operator matrix elements at NNLO

- A_{Qg} work in progress
- A_{gg} work in progress
- $A_{Qq}^{\mathsf{PS}} \checkmark \to \mathsf{this talk}$
- $A_{qq,Q}^{NS} \sqrt{}$ [Ablinger et al. '14]

- $A_{qq,Q}^{\text{TR}} \checkmark$ [Ablinger et al. '14]
- $A_{gq,Q}$ \checkmark [Ablinger et al. '14]
- $A_{qg,Q}$ \checkmark [Ablinger et al. '10]

•
$$A_{qq,Q}^{\mathsf{PS}}$$
 \checkmark [Ablinger et al. '10]

Heavy flavor Wilson coefficients at NNLO

- $H_{g,2}^{S}$ work in progress
- $H_{q,2}^{\mathsf{PS}} \checkmark \to \mathsf{this talk}$
- $L_{q,2}^{NS} \checkmark$ [Ablinger et al. '14]

- $L_{q,2}^{\mathsf{PS}}$ \checkmark [Behring et al. '14]
- $L_{g,2}^{\mathsf{S}}$ \checkmark [Behring et al. '14]

Calculating massive operator matrix elements

Definition of the OMEs A_{ij}

- $A_{ij} := \langle j | O_i | j \rangle$
- O_i : local operators
- |j
 angle: partonic states (massless, on-shell)

Outline of the computation

- Generate diagrams (QGRAF) [P. Nogueira '93]
- Apply Feynman rules including operators; $(\Delta.p)^N \rightarrow \frac{1}{1-x\Delta.p}$
- Reduce to master integrals (extension of Reduze 2) [von Manteuffel, Studerus '10,'12]
- Solve the master integrals (ightarrow next slide)
- Put everything together and create results in N- and x-space

Conclusions

Solving the master integrals

Solve the master integrals applying

- higher hypergeometric functions,
- Mellin-Barnes integrals,
- Almkvist-Zeilberger algorithm,
- difference equations.

Transform resulting sum representations using

- Sigma [Schneider '05-], HarmonicSums [Ablinger, Blümlein, Schneider '10,'13],
- EvaluateMultiSums & SumProduction [Ablinger, Blümlein, Hasselhuhn, Schneider '10-].

Occurring mathematical structures (*N*-space):

- Harmonic sums [Vermaseren '99; Blümlein, Kurth '99]
- Gen. harmonic sums (S-sums) [Moch, Uwer, Weinzierl '02; Ablinger, Blümlein, Schneider '13]
- (Gen.) cyclotomic sums [Ablinger, Blümlein, Schneider '11]
- Binomially weighted sums [Ablinger, Blümlein, Raab, Schneider '14]

Constant part of the pure-singlet OME $a_{Qa}^{PS,(3)}$

 $a_{Oa}^{(3),PS}(N) =$ $C_F T_F^2 \left[\frac{32}{27(N-1)(N+3)(N+4)(N+5)} \left(\frac{P_{15}}{N^3(N+1)^2(N+2)^2} S_2 \right) \right]$ $-\frac{P_{19}}{N^3(N+1)^3(N+2)^2}S_1^2 + \frac{2P_{28}}{3N^4(N+1)^4(N+2)^3}S_1 - \frac{2P_{32}}{9N^5(N+1)^4(N+2)^4}\right)$ $-\frac{32P_3}{9(N-1)N^3(N+1)^2(N+2)^2}\zeta_2 + \left(\frac{32}{27}S_1^3 - \frac{160}{9}S_1S_2 - \frac{512}{27}S_3 + \frac{128}{3}S_{2,1}\right)$ $+\frac{32}{3}S_{1}\zeta_{2}-\frac{1024}{9}\zeta_{3}\bigg)F\bigg]+\frac{C_{F}N_{F}T_{F}^{2}\bigg[\frac{16P_{7}}{27(N-1)N^{3}(N+1)^{3}(N+2)^{2}}S_{1}^{2}$ $+\frac{208P_7}{27(N-1)N^3(N+1)^3(N+2)^2}S_2-\frac{32P_{21}}{81(N-1)N^4(N+1)^4(N+2)^3}S_1$ $+\frac{32P_{29}}{243(N-1)N^5(N+1)^5(N+2)^4} + \left(-\frac{16}{27}S_1^3 - \frac{208}{9}S_1S_2 - \frac{1760}{27}S_3 - \frac{16}{3}S_1\zeta_2\right)$ $+\frac{224}{9}\zeta_3F + \frac{1}{(N-1)N^3(N+1)^3(N+2)^2}\frac{16P_7}{9}\zeta_2$ $+C_F^2 T_F \left[\frac{32P_9}{3(N-1)N^3(N+1)^3(N+2)^2} S_{2,1} - \frac{16P_{14}}{9(N-1)N^3(N+1)^3(N+2)^2} S_3 \right]$ $-\frac{4P_{17}}{3(N-1)N^4(N+1)^4(N+2)^3}S_1^2 + \frac{4P_{23}}{3(N-1)N^4(N+1)^4(N+2)^3}S_2$ $+\frac{4P_{31}}{3(N-1)N^6(N+1)^6(N+2)^4} + \left(\left(\frac{2P_5}{N^2(N+1)^2} - \frac{4P_1}{N(N+1)}S_1\right)\zeta_2\right)$ $-\frac{4P_1}{9N(N+1)}S_1^3$ $G + \left(\left(\frac{80}{9}S_3 - 64S_{2,1}\right)S_1 - \frac{2}{9}S_1^4 - \frac{20}{3}S_1^2S_2 + \frac{46}{3}S_2^2 + \frac{124}{3}S_4\right)$ $+\frac{416}{2}S_{2,1,1} + 64\left(S_3(2) - S_{1,2}(2,1) + S_{2,1}(2,1) - S_{1,1,1}(2,1,1)\right)S_1\left(\frac{1}{2}\right)$ $-S_{1,3}\left(2, \frac{1}{2}\right) + S_{2,2}\left(2, \frac{1}{2}\right) - S_{3,1}\left(2, \frac{1}{2}\right) + S_{1,1,2}\left(2, \frac{1}{2}, 1\right) - S_{1,1,2}\left(2, 1, \frac{1}{2}\right)$ $-S_{1,2,1}\left(2,\frac{1}{2},1\right)+S_{1,2,1}\left(2,1,\frac{1}{2}\right)-S_{2,1,1}\left(2,\frac{1}{2},1\right)-S_{2,1,1}\left(2,1,\frac{1}{2}\right)$ $+S_{1,1,1,1}\left(2,\frac{1}{2},1,1\right)+S_{1,1,1,1}\left(2,1,\frac{1}{2},1\right)+S_{1,1,1,1}\left(2,1,1,\frac{1}{2}\right)+\left(12S_{2}-4S_{1}^{2}\right)\zeta_{2}$ $+\left(\frac{112}{2}S_1 - 448S_1\left(\frac{1}{2}\right)\right)\zeta_3 + 144\zeta_4 - 32B_4\right)F + \frac{32P_22^{-N}}{(N-1)N^3(N+1)2}\left(-S_3(2)\right)$ $+S_{1,2}(2, 1) - S_{2,1}(2, 1) + S_{1,1,1}(2, 1, 1) + 7\zeta_3 + \left(-\frac{4P_8}{3(N-1)N^3(N+1)^3(N+2)^2}S_2\right)$ $+\frac{8P_{27}}{3(N-1)N^5(N+1)^5(N+2)^4}S_1 + \frac{1}{(N-1)N^3(N+1)^3(N+2)^2}\frac{4P_{16}}{3}\zeta_3$

$+C_A C_F T_F$	8P10	S2.1 +	8P12 S	-3
l	$3(N - 1)N^{3}(N + 1)^{3}()$ 16P ₁₂	$(N + 2)^2 = 3(N - 1)^2 - 8P_{22}$	$(N^{3}(N + 1)^{3}(N + 2)^{2})$	
$+\frac{1}{3(N-1)N}$	$(N+1)^3(N+2)^2 S_{-2}$	$^{1} + \frac{1}{27(N-1)^2N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3(N-1)^3N^3$	$(+1)^3(N+2)^2S_3$	
$-\frac{1}{27(N-1)^2}$	$\frac{4P_{24}}{^{2}N^{4}(N+1)^{4}(N+2)^{3}}S_{1}^{2}$	$\frac{4P_{26}}{27(N-1)^2N^4(N+1)^2}$	$(-1)^4 (N + 2)^3 S_2$	
$-\frac{1}{243(N-1)}$	$\frac{8P_{33}}{N^6(N+1)^6(N+2)^5}$	$+\left(\frac{4P_4}{27(N-1)N(N+1)}\right)$	$\frac{1}{(N+2)}S_1^3$	
$+\left(\frac{8}{9}(137N^2)\right)$	$+137N + 334)S_3 - \frac{16}{3}$	$(35N^2 + 35N + 18)S$	$_{2,1})S_1$	
$+\frac{8}{3}(69N^2 +$	$(69N + 94)S_{-3}S_1 + \frac{64}{3}$	$7N^2 + 7N + 13)S_{-2}S_2$	$+\frac{2}{3}(29N^2+29N+74)$	S
$+\frac{4}{3}(143N^2 +$	$-143N + 310)S_4 - \frac{16}{3}(3)$	$3N^2 + 3N - 2)S_{-2}^2 + \frac{1}{2}$	$\frac{6}{3}(31N^2 + 31N + 50)S$	-4
$-8(7N^2 + 7)$	$N + 26$ $S_{3,1} - 64(3N^2 +$	$-3N + 2$ $S_{-2,2} - \frac{32}{3}(2$	$3N^2 + 23N + 22)S_{-3,1}$	
$+\frac{64}{3}(13N^2 +$	$(13N + 2)S_{-2,1,1} + \frac{3}{3(N)}$	$\frac{4P_4}{(N-1)N(N+1)(N+2)}$	$\overline{S_1}\zeta_2$	
$-{8\over3}\bigl(11N^2 +$	$11N + 10 S_1 \zeta_3 G + (\frac{1}{2})$	$\frac{112}{3}S_{-2}S_1^2 + \frac{2}{9}S_1^4 + \frac{68}{3}$	$S_1^2S_2 - \frac{80}{3}S_{2,1,1}$	
$+32 \Big(\Big(-S_3 \Big) \Big)$	$2) + S_{1,2}(2, 1) - S_{2,1}(2, 1)$	$1) + S_{1,1,1}(2, 1, 1) S_1$	$\left(\frac{1}{2}\right) + S_{1,3}\left(2, \frac{1}{2}\right)$	
$-S_{2,2}\left(2,\frac{1}{2}\right)$	$+S_{3,1}\left(2,\frac{1}{2}\right)-S_{1,1,2}$	$\left(2, \frac{1}{2}, 1\right) + S_{1,1,2}\left(2, 1\right)$	$\left(\frac{1}{2}\right) + S_{1,2,1}\left(2, \frac{1}{2}, 1\right)$	
$-S_{1,2,1}(2, 1,$	$\left(\frac{1}{2}\right) + S_{2,1,1}\left(2, \frac{1}{2}, 1\right) +$	$S_{2,1,1}\left(2, 1, \frac{1}{2}\right) - S_{1,1}$	$_{,1,1}\left(2, \frac{1}{2}, 1, 1\right)$	
$-S_{1,1,1,1}(2,$	$1, \frac{1}{2}, 1$ - $S_{1,1,1,1}$ (2, 1, 1	$1, \frac{1}{2}$) + $\left(4S_1^2 + 12S_2\right)$	$+24S_{-2}\zeta_{2}$	
$+224S_1\left(\frac{1}{2}\right)$	$\zeta_3 - 144\zeta_4 + 16B_4 F +$	$+\frac{16P_22^{-N}}{(N-1)N^3(N+1)^2}$	$(S_3(2) - S_{1,2}(2, 1))$	
$+S_{2,1}(2,1)$ –	$S_{1,1,1}(2, 1, 1) - 7\zeta_3 +$	$\left(\frac{4P_{11}}{9(N-1)^2N^3(N+1)}\right)$	$(N+2)^2 S_2$	
$+\frac{1}{81(N-1)^2}$	$\frac{4P_{30}}{^{4}N^{5}(N + 1)^{5}(N + 2)^{4}}$	$S_1 + \left(\frac{321}{3(N-1)N^3(N-1)}\right)$	$\frac{P_6}{(N+2)^2}S_1$	
$-\frac{1}{3(N-1)N}$	$\frac{8P_{18}}{(N+1)^4(N+2)^3}$	${}_{2} - \frac{4P_{25}}{9(N-1)^2N^4(N+1)}$	$(1)^4 (N + 2)^3 \hat{\zeta}_2$	
$-\frac{1}{9(N-1)^2}$	$\frac{8P_{20}}{N^3(N+1)^3(N+2)^2}\zeta_3$			

Constant part of the pure-singlet OME $a_{Qa}^{PS,(3)}$

Constant part of the pure-singlet OME $a_{Qq}^{PS,(3)}$

.

x	10	10 -	10 -	10 -
$F_2(x, Q^2 = 20 \mathrm{GeV}^2)$	1.94	1.14	0.64	0.40
$F_2(x, Q^2 = 100 \text{GeV}^2)$		1.70	0.83	0.41
$F_2(x, Q^2 = 1000 \text{GeV}^2)$			1.04	0.41

1

Variable flavor number scheme (VFNS)

- Transition from scheme with n_f massless and 1 massive flavor to scheme with $n_f + 1$ effectively massless flavors
- Massive OMEs appear in the matching conditions of the PDFs

NNLO matching condition for non-singlet case: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09, '09]

$$\begin{split} f_{k}(n_{f}+1,\mu^{2}) + \bar{f}_{k}(n_{f}+1,\mu^{2}) \\ &= A_{qq,Q}^{\mathsf{NS}} \otimes [f_{k}(n_{f},\mu^{2}) + \bar{f}_{k}(n_{f},\mu^{2})] \\ &+ \frac{1}{n_{f}} \left(A_{qq,Q}^{\mathsf{PS}} \otimes \Sigma(n_{f},\mu^{2}) + A_{qg,Q} \otimes G(n_{f},\mu^{2}) \right) \end{split}$$

Variable flavor number scheme (VFNS)

- Transition from scheme with n_f massless and 1 massive flavor to scheme with $n_f + 1$ effectively massless flavors
- Massive OMEs appear in the matching conditions of the PDFs

NNLO matching condition for non-singlet case: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09, '09]

$$\begin{aligned} f_k(n_f + 1, \mu^2) + \bar{f}_k(n_f + 1, \mu^2) \\ &= A_{qq,Q}^{\mathsf{NS}} \otimes \left[f_k(n_f, \mu^2) + \bar{f}_k(n_f, \mu^2) \right] \\ &+ \frac{1}{n_f} \left(A_{qq,Q}^{\mathsf{PS}} \otimes \Sigma(n_f, \mu^2) + A_{qg,Q} \otimes G(n_f, \mu^2) \right) \end{aligned}$$

• Ingredients at NNLO are now complete for the above relation • $A_{aa,Q}^{PS}$ and $A_{ag,Q}$ start at NNLO

Variable flavor number scheme (VFNS)

- Transition from scheme with n_f massless and 1 massive flavor to scheme with $n_f + 1$ effectively massless flavors
- Massive OMEs appear in the matching conditions of the PDFs

NNLO matching condition for non-singlet case: [Buza et al. '96] [Bierenbaum, Blümlein, Klein, '09, '09]

$$\begin{aligned} f_k(n_f + 1, \mu^2) + \bar{f}_k(n_f + 1, \mu^2) \\ &= A_{qq,Q}^{\mathsf{NS}} \otimes \left[f_k(n_f, \mu^2) + \bar{f}_k(n_f, \mu^2) \right] \\ &+ \frac{1}{n_f} \left(A_{qq,Q}^{\mathsf{PS}} \otimes \Sigma(n_f, \mu^2) + A_{qg,Q} \otimes G(n_f, \mu^2) \right) \end{aligned}$$

• Ingredients at NNLO are now complete for the above relation • $A_{ag,Q}^{PS}$ and $A_{ag,Q}$ start at NNLO

Variable flavor number scheme (VFNS)

$$R(n_f + 1, n_f) = \frac{u(n_f + 1, \mu^2) + \bar{u}(n_f + 1, \mu^2)}{u(n_f, \mu^2) + \bar{u}(n_f, \mu^2)}, \text{ here } n_f = 3$$

Conclusions

Variable flavor number scheme (VFNS)

$$R(n_f + 1, n_f) = \frac{u(n_f + 1, \mu^2) + \bar{u}(n_f + 1, \mu^2)}{u(n_f, \mu^2) + \bar{u}(n_f, \mu^2)}, \text{ here } n_f = 3$$

$A_{Qg}^{(3)}$: Ladder and V diagrams

- Ladder topologies enter $A^{(3)}_{Qg},\,A^{(3)}_{gg,Q}$ and $A^{(3)}_{qg,Q}$
- Scalar prototypes (without numerators) of A⁽³⁾_{Qg} ladder diagrams were calculated in 2012 [Ablinger et al. '12]
 ⇒ Calculation of complete scalar graphs
- Now: Calculation of the physical $A_{Qg}^{(3)}$ diagrams (with numerators) using master integrals

Example: V diagram 12

- Particularly difficult diagram: V topology with 5 massive lines
- Operator introduces "non-planarity" into planar diagram
- Reduction using integration-by-parts identities requires
 92 master integrals
- Calculation of master integral is very demanding (O(weeks) of computation time)
- Required new computer algebra tools for the solution of coupled systems of difference equations and handling of binomially weighted sums
 → Extension of OreSys [Gerhold '02]

Example: V diagram 12 - the result

$$\begin{split} D_{ab} &= -\frac{(N+1)P_{1}}{P_{ab}(_{a}^{N})} \sum_{i=1}^{N} \frac{(P_{i})}{I_{i}} \sum_{i=1}^{N} \frac{(P_{i})}{P_{ab}(_{a}^{N})} \sum_{i=1}^{N} \frac{(P_{i})}{P_{a}(_{a}^{N})} \sum_{i=1}^{N} \frac{$$

$$\begin{split} & -3\sum_{n=1}^{N} \frac{\binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n} - 2\sum_{n=1}^{N} \frac{(-1)^{n} \binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n} - 3\sum_{n=1}^{N} \frac{\binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n} + 2\binom{(2)}{n} \binom{(2)}{n} \binom{(2)}{n$$

Example: V diagram 12 - the result

Conclusions

Conclusions

- Heavy quark corrections yield important contributions to DIS \rightarrow essential for precision measurements of $\alpha_{\rm s}$ (1%) and $m_{\rm c}$ (3%). [Alekhin et al. '12]
- New mathematical and computer-algebraic methods required for analytic calculation of the 3-loop corrections \rightarrow includes new classes of higher transcendental functions and function spaces
- Completed Wilson coefficients and massive OMEs:

 - L^{PS}_{q,2}, L^S_{g,2}, L^{NS}_{q,2}, H^{PS}_{q,2}
 A^{PS}_{qa,Q}, A_{qg,Q}, A^{NS}_{qq,Q}, A^{TR}_{qq,Q}, A^{PS}_{qq,Q}, A^{PS}_{qq,Q}, A^{PS}_{qq,Q}
- Ingredients for first matching relation of the VFNS are complete.
- Physical ladder and V diagrams for A_{Qg} have been calculated.
- Calculation of the remaining massive OMEs A_{Qg} and $A_{gg,Q}$ and Wilson coefficient $H_{g,2}^{S}$ is in progress.

Backup

- The structure function $F_2 \rightarrow 17$
- Feynman rules for local operators ightarrow 18
- Non-planarity of diagram 12
 ightarrow 19
- Operator matrix element $a_{Qq}^{\mathrm{PS},(3)}
 ightarrow 20$

The structure function F_2

Feynman rules for local operators

Non-planarity of diagram 12

- The diagram is planar
- The Feynman rule for the operator insertion reads

$$\begin{array}{cccc} & & & & \\ \hline p_1, i & & & \\ & & & \\ p_2, j & & & \\ & & & \\ p_3, \mu, a & & \\ p_4, \nu, b & & \\ \end{array} \begin{array}{c} g^2 \Delta^{\mu} \Delta^{\nu} \not\Delta \gamma_{\pm} \sum_{j=0}^{N-3} \sum_{l=j+1}^{N-2} (\Delta p_2)^j (\Delta p_1)^{N-l-2} \\ & & \\ & & \\ [(t^a t^b)_{ji} (\Delta p_1 + \Delta p_4)^{l-j-1} + (t^b t^a)_{ji} (\Delta p_1 + \Delta p_3)^{l-j-1}] \end{array} \right),$$

• $\left(p_1+p_4
ight)^{(l-j-1)}$ part mixes momenta from two different loops

- Shifting the momenta allows to put these mixed momenta into the operator or into one of the propagators, but one cannot get rid of this structure
- Effective non-planarity arises

Operator matrix element $a_{Qq}^{\text{PS},(3)}$

Plot: [Ablinger et al. '14], approximate solution (grey band): [Kawamura et al. '12]

Operator matrix element $a_{Qq}^{\text{PS},(3)}$

Plot: [Ablinger et al. '14], approximate solution (grey band): [Kawamura et al. '12]