Effects of higher dimensional operators on the Higgs p_T spectrum

Agnieszka Ilnicka in collaboration with: M. Grazzini, M. Spira, M. Wiesemann

University of Zurich ETH Zurich PSI

Motivation

Why effective operators?

- In LHC run 1 no signs of BSM physics
- Theory viewpoint: New Physics is required (hierarchy problem, dark matter, cosmology, ...)
- Possible: NP at high scales beyond reach of current experiments
- However: NP may appear indirectly as (small) deviations from the SM predictions
- Effective Field Theory approach to Beyond Standard Model Physics (BSMeff) (Buchmüller, Wyler '86; Grzadkowski, Iskrzynski '10):
 - is complementary to the direct search for New Physics (see talks by Shruti, Matìas, Michele)
 - is model independent way to parametrise New Physics (see also talk by Raquel)

Motivation

Why Higgs p_T spectrum?

- Sheds light on the Higgs coupling to gluons
- Some effect may be impossible to disentangle just by measuring total cross section
- More information than just one number:
 - shapeposition of maximum
 - normalisation
- The resummation needed to correctly treat low p_T region
- p_T spectrum is helpful in experimental analysis
- For a scalar: production and decay factorize

Motivation

Our goal

Start from the best perturbative QCD prediction available for the p_T spectrum to incorporate BSM effects in a model independent way.

Effective Field Theory approach to Beyond Standard Model physics ¹

Effective Field Theory

• Full theory consists of light and heavy $(M_{high} \sim \Lambda)$ degrees of freedom:

$$\mathcal{L} = \mathcal{L}_{low} + \mathcal{L}_{high} + \mathcal{L}^{int}$$

- \bullet When we consider the theory at the energy scales $\ll \Lambda$ we can integrate out the heavy degrees of freedom
- That leads to infinite ladder of new operators

$$\mathcal{L} = \mathcal{L}_{low}^{(4)} + \sum_{k=4}^{\infty} \sum_{i} \frac{ar{c}_{i}^{(k)}}{igwedge^{(k-4)}} \mathcal{O}_{i}^{(k)}$$

- The new operators $\mathcal{O}_i^{(k)}$:
 - ullet consist of fields from $\mathcal{L}_{\mathit{low}}$
 - · are Lorentz and gauge invariant
 - have dimension > 4
 - are nonrenormalizable

¹see also talk by Raquel

Effective Field Theory approach to Beyond Standard Model physics

Effective Field Theory approach to Beyond Standard Model physics (BSMeff)

- ullet As light fields all the Standard Model fields included: $\mathcal{L}_{low} = \mathcal{L}_{SM}$
- Assumes scale separation between SM and NP: complementarity to direct search approach
- No mixing between light and heavy states
- From the SM fields we construct gauge invariant operators of higher dimension
- The experimental bounds on Wilson coefficients ($\bar{\varepsilon}_i^{(k)}$) after matching to full theory may be translated to constrains of model parameters
- \bullet For the some specific models one may prefer to take other \mathcal{L}_{low} limits, e.g. MSSM \to 2HDM, NMSSM \to 2HDM+S

Current status of Higgs production at hadron colliders

Calculations of total cross-section

- Note: Higgs production via gluon fusion is loop process at LO
- Higher orders of α_s corrections:
 - virtual: additional loop
 - · real: additional parton in final state
- NLO corrections known from '90 (Ellis, Hinchliffe et al.'88; Baur, Glover '90; M.Spira et al.'91, '95; Dawson '91)
- NNLO corrections known in heavy top limit approximation (Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, Van Neerven '03)
 - Approximate top mass effects (Marzani et al.'08; Harlander et al.'09,'10; Steinhauser et al.'09)
 - Inclusion of EW corrections (Aglietti et al.'04; Degrassi, Maltoni '04; Passarino '08)
- Recently, N³LO calculations (Anastasiou, Duhr, Mistlberger et al.'13-'15)

The Higgs p_T spectrum in QCD perturbation theory

Fixed order calculations of p_T spectrum

- LO p_T spectrum is at $O(\alpha_s^3)$ (delta function at $O(\alpha_s^2)$): need parton radiation in final state to get nonzero p_T
- The contributions to LO p_T spectrum:

- p_T spectrum at fixed order valid for $p_T \gtrsim M_H$
- LO p_T spectrum known from '90 (Ellis, Hinchliffe et al.'88; Baur, Glover '90)
- NLO p_T spectrum calculations in the heavy top limit (de Florian, Grazzini, Kunszt '99; Glosser, Schmidt '02; Ravindran, Smith, Van Neerven '02)
 - approximate inclusion of top and bottom mass effects (Mantler, Wiesemann'12; Grazzini, Sargsyan '13)
- Results on Higgs + jet at NNLO (Boughezal, Caola, et al.'13; Chen, Gehrmann, Glover, Jaquier '14)

The Higgs p_T spectrum in QCD perturbation theory

Low p_T spectrum: resummation

- For $p_T \ll M_H$ the perturbative expansion is affected by large logarithms $\sim ln^n(\frac{m_H^2}{p_T^2})$
- These terms can be systematically resummed by working in impact parameter b-space (Collins, Soper, Sterman '85)
- ullet Then the two (resummed and fixed order) regions needs to be matched at intermediate p_T (Bozzi,Catani,de Florian,Grazzini '05)

$$\left[\frac{d\sigma}{d\rho_T^2} \right]_{\text{f.o.}+\text{a.o.}} = \left[\frac{d\sigma}{d\rho_T^2} \right]_{\text{f.o.}} - \left[\frac{d\sigma^{(\text{res})}}{d\rho_T^2} \right]_{\text{f.o.}} + \left[\frac{d\sigma^{(\text{res})}}{d\rho_T^2} \right]_{\text{a.a.o.}}$$

The matched cross section satisfies the unitarity condition

from M. Wiesemann

What was done previously in BSMeff context

- Full classification of dimension 5 and 6 BSMeff operators (Buchmüller, Wyler '86; Grzadkowski, Iskrzynski et al.'10)
- Bounds on the Wilson coefficients from EW and Higgs observables (e.g. Riva et al.'13-'14)
- Impact of dimension 6 and 8 operators on the Higgs high p_T spectrum at LO (e.g. dim6: Grojeana, Salvioni et al.'13; Azatov, Paul '13; dim8: Harlander, Neumann'13, Dawson, Lewis, Zeng'14)
- Discussion on strategy how to use BSMeff to determine if NP is weakly or strongly interacting (Contino, Ghezzi et al.'13)
- First data on Higgs p_T spectrum from ATLAS in diphoton and four lepton channel (1407.4222,1408.3226)

Our approach

BSM Effective Operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \bar{\mathcal{O}}_{i}$$

Three new, gauge invariant, dimension 6 operators:

$$\bar{\mathcal{O}}_{1} = \frac{c_{1}}{\Lambda^{2}}|H|^{2}G_{\mu\nu}^{a}G^{a,\mu\nu}; \\ \bar{\mathcal{O}}_{2} = \frac{c_{2}}{\Lambda^{2}}|H|^{2}\bar{\mathcal{Q}}_{L}H^{c}u_{R} + h.c.; \\ \bar{\mathcal{O}}_{3} = \frac{c_{3}}{\Lambda^{2}}|H|^{2}\bar{\mathcal{Q}}_{L}Hd_{R} + h.c.$$

• In case of single Higgs production these may be expressed as:

$$ar{\mathcal{O}}_1
ightarrow rac{lpha_s}{\pi_V} c_g h G^a_{\mu
u} G^{a,\mu
u}
ightarrow \mathrm{ggh}$$
 point coupling

$$\bar{\mathcal{O}}_2
ightarrow rac{m_t}{v} c_t h \bar{t} t
ightarrow ext{modification of top yukawa coupling}$$

$$\bar{\mathcal{O}}_3
ightarrow rac{m_b}{v} c_b h \bar{b} b
ightarrow ext{modification of bottom yukawa coupling}$$

ullet Note: ggh coupling has same structure as the heavy top limit $(m_t o \infty)$ in SM

Our approach

BSM Effective Operators

BSMeff Leading Order contributions:

• Note: Total cross section does not give information about cs separately:

$$\sigma \approx |12c_g + c_t|^2 \sigma_{SM}$$

• c_t may be measured by tth channel, but doesn't give limit on c_g

Our implementation

- Effective operators implemented in the HqT program up to NLO+NLL accuracy
- Cross-checked with independent implementations in HIGLU and HNNLO at fixed order

Outlook

- Make our implementation bulletproof crosschecks with other codes, compare results with existing ones
- Add higher order in QCD, i.e. NLO p_T distribution, NNLO total cross section, to obtain state of the art NNLO+NNLL calculations of p_T spectrum
- Add dimension 8 operators:
 - · choice of operator basis
 - · completely new operators new tensor structures

Summary

- Effective Field Theory can be used to parametrise in model independent way the effects of high scale BSM physics
- We accomplished implementation of dimension 6 operators relevant for Higgs boson production at NLO+NLL level
- The p_T spectrum including these operators valid for whole p_T range is now available

BACKUP

Comparison with HIGLU and HNNLO

Comparison with HIGLU

at $p_T = 300$ GeV, gg channel			
Couplings	HIGLU	Our implementation	
$c_t = 2; c_b = 1; c_g = 0$	0.1763 E-02	0.1764 E-02	
$c_t = 100; c_b = 1; c_g = 0$	4.359	4.360	
$c_t = 1; c_b = 2; c_g = 0$	0.4559 E-03	0.4561 E-03	
$c_t = 1; c_b = 100; c_g = 0$	0.2332 E-02	0.2333 E-02	
$c_t=1; c_b=1; c_g=0.001$	0.4570 E-03	0.4573 E-03	
$c_t = 1; c_b = 1; c_g = 0.1$	0.2292 E-02	0.2291 E-02	

Comparison with HIGLU and HNNLO

Comparison with HNNLO

C1 virtual correction			
<u> </u>			
Couplings	HNNLO	Our implementation	
$c_t = 1; c_b = 1; c_g = 1.2$	8.7067	8.7067	
$c_t = 1; c_b = 1; c_g = 12$	7.6256	7.6256	
$c_t = 1; c_b = 1; c_g = 120$	7.4263	7.4263	
$c_t = 5; c_b = 1; c_g = 12$	8.2506	8.2507	
$c_t=1; c_b=1; c_g=0.001$	7.6257	7.6257	
$\sigma_{NIO}^{tot}(gg)$			
Couplings	HNNLO	Our implementation	
SM	14.78 pb	14.78 pb	
$c_t=1.1; c_b=1; c_g=0.1$	21.02 pb	21.00 pb	

