HEP in Finland – midterm report

Outline

Basic facts

HEP Finland

LHC computing

Conclusions

K. Österberg,Helsinki Institute of Physics &Department of Physics, University of Helsinki

Outline:

- Basic facts about Finland
- Education students
- HEP in Finland:
- research projects
- human resources
- organization & funding
- Grid & LHC computing
- Conclusions

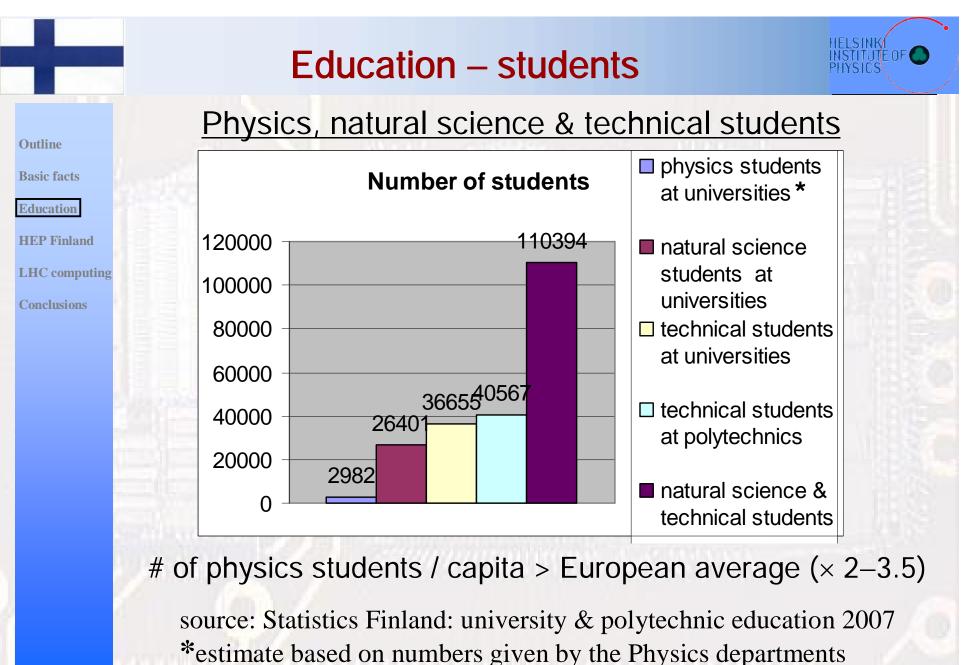
PECFA midterm report, 18th July 2008

Basic facts about Finland

Outline Basic facts

HEP Finland

Education

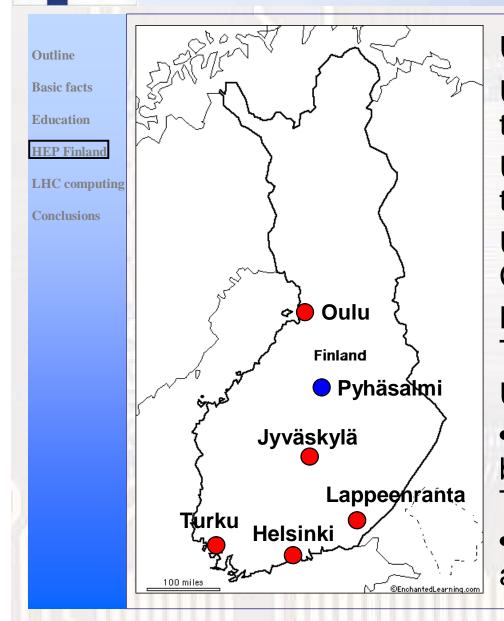

LHC computing

Conclusions

population: 5.3 million GDP / capita: 32 700 USD (OECD: 31 500 USD) distance from CERN: ~ 2 500 km Primary education (PISA 2006 assessment): best OECD mean score for science & maths University (or other tertiary) education (age group: 25-64): 5th in % of population with degree: 34.6 % Science & Technology indicators: • 2nd in % R&D expenditure of GDP: 3.45 % but gov. funded part significantly lower: 0.89 % 1st in # of research FTE / 1k employ. FTE: 16.6 but again gov. & higher education part significantly lower source: OECD.StatExtracts (stats.oecd.org)

PECFA midterm report, 18th July 2008

Education – students 20 Universities (degrees:bachelor, master, licenciate, doctorate) Outline 29 Polytechnics (degrees:bachelor, master) **Basic facts Education** PhD students Number of students **HEP Finland** (university only) LHC computing technical & natural Conclusions science students at 18044 polytechnics 47338 technical & natural 63056 science students at universities 133284 polytechnic students 152196 309588 university students (bachelor & master) 0 100000 200000 300000 4000 all students source: Statistics Finland (<u>www.stat.fi</u>): university and polytechnic education 2007 PECFA midterm report, 18th July 2008 Kenneth Österberg



themselves with meteorology & astronomy students subtracted

PECFA midterm report, 18th July 2008

HEP in Finland

Universities with HEP: University of Helsinki – theory & experiment University of Jyväskylä – theory & experiment University of Oulu – theory & CUPP, Pyhäsalmi – experiment Lappeenranta University of Technology – experiment University of Turku – theory 5 more universities with physics but no HEP (Helsinki University of Technology has students in HEP) ~ 30 % of physics students attend University of Helsinki

PECFA midterm report, 18th July 2008

Finnish HEP: past & present

HELSINKI INSTITUTE OF OP PHYSICS

Basic facts

Outline

Education HEP Finland

LHC computing

Conclusions

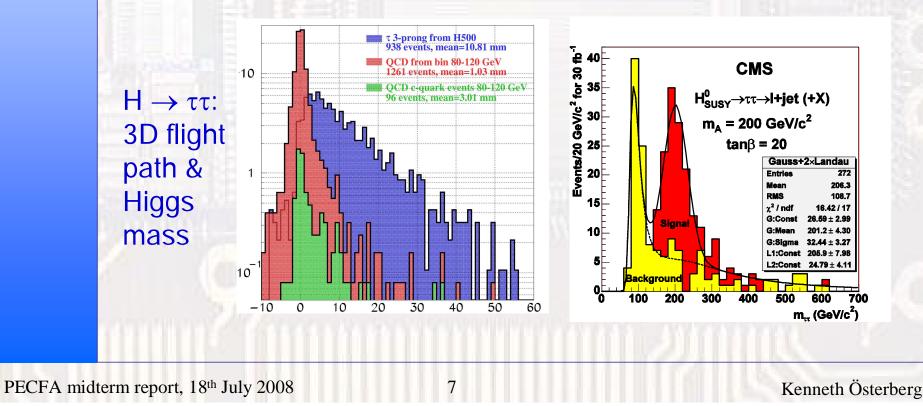
- At LEP effort focused on **DELPHI** with large hardware contributions to HCAL and Microvertex / Silicon Tracker
 - Finnish CERN activities coordinated by HIP
- At LHC Finland participates in **CMS**, **ALICE** and **TOTEM** with important construction tasks: trackers (both gas and silicon based) and trigger systems.
 - Physics activity in CDF to bridge gap between LEP and LHC + prepare for hadron collider environment
- Underground experimental activity in Pyhäsalmi mine
- Strong nuclear (& other accelerator based) physics activity: Jyväskylä accelerator lab, ISOLDE & FAIR.
- Strong theory, phenomenology and cosmology activity
- Active Finnish student exchange program

PECFA midterm report, 18th July 2008

CMS contribution

Outline Basic facts

Education


HEP Finland

LHC computing

Conclusions

Participation in CMS from its conception in 1990
 longstanding participation in physics simulation, study of discovery potential (MSSM Higgses) + preparation for event reconstruction and physics analysis

participation in creation of the core software for CMS software alignment of the pixel detector using tracks

CMS contribution

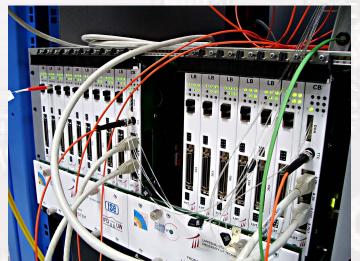
Outline

Basic facts

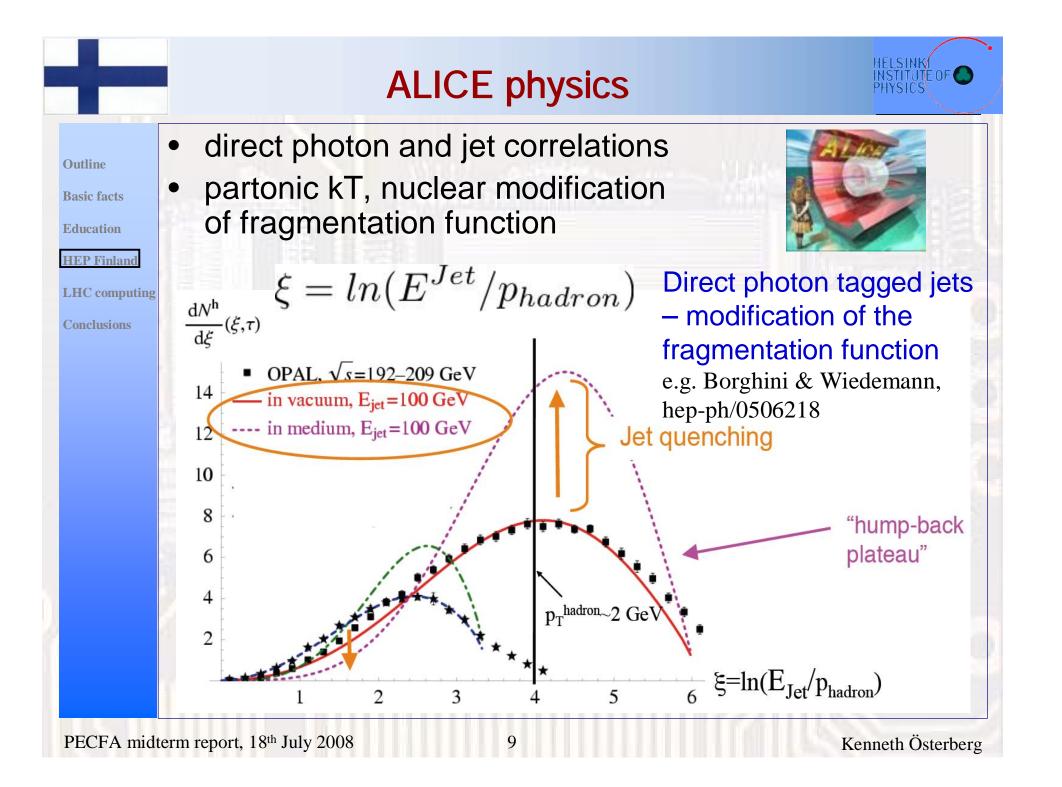
HEP Finland

LHC computing

Conclusions

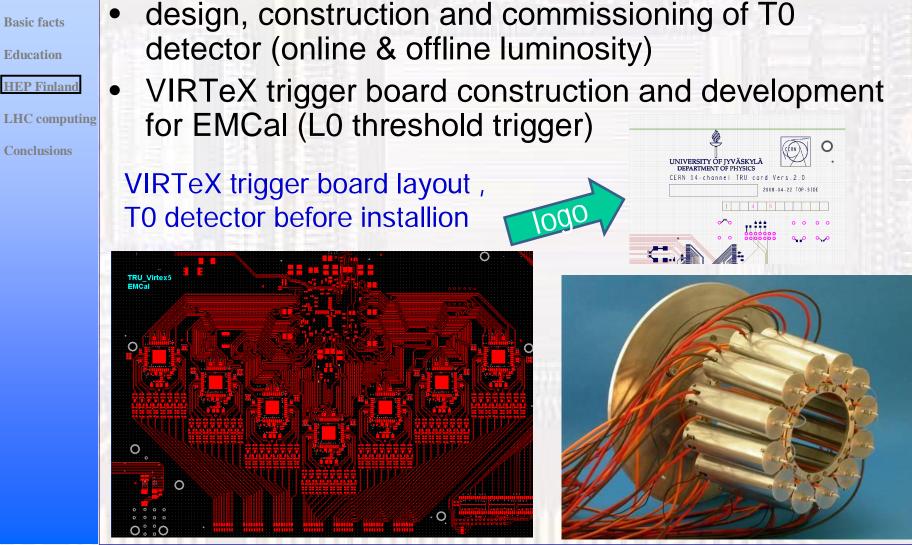

design & construction of Tracker Outer Barrel mechanical support + comissioning of CMS Tracker

design & manufacture of RPC muon trigger link boards + comissioning of RPC trigger


R&D for radiation hard silicon detectors for Tracker upgrade for SLHC

Tracker Outer Barrel wheel, RPC muon trigger link boards

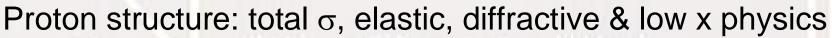
PECFA midterm report, 18th July 2008


ALICE contribution

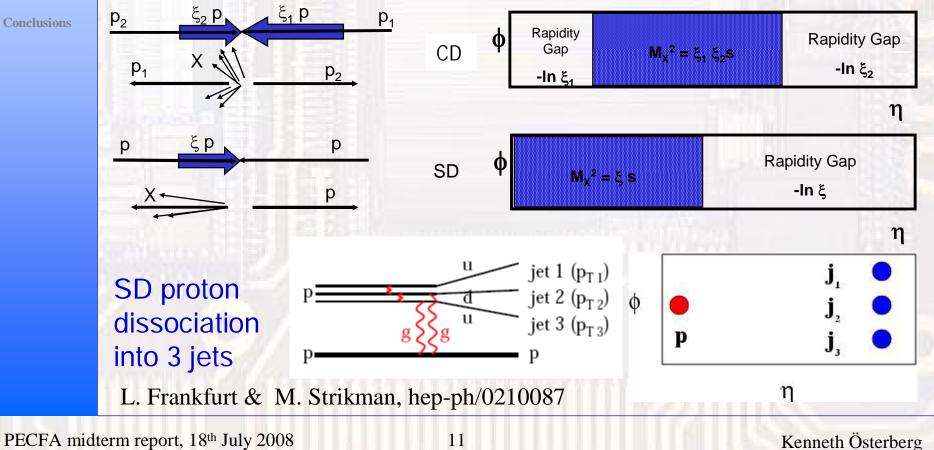
assembly of the SSD silicon detectors (~35 %)

Outline Basic facts Education

Conclusions


10

TOTEM physics



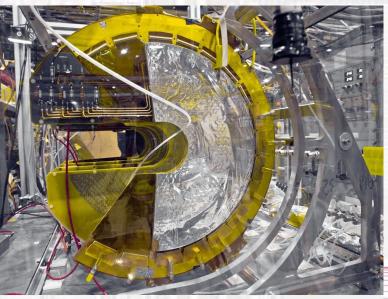
Conclusions

- leading proton measurement performance studies vs different LHC optics
- physics potential central (CD) & single (SD) diffraction

TOTEM contribution

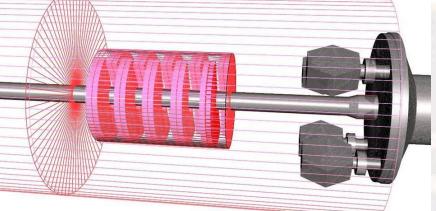
Outline

Basic facts


Education

HEP Finland

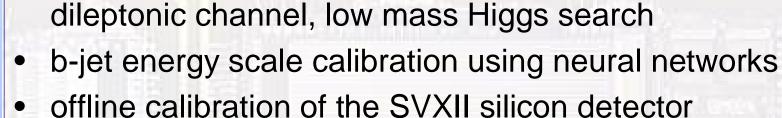
LHC computing


Conclusions

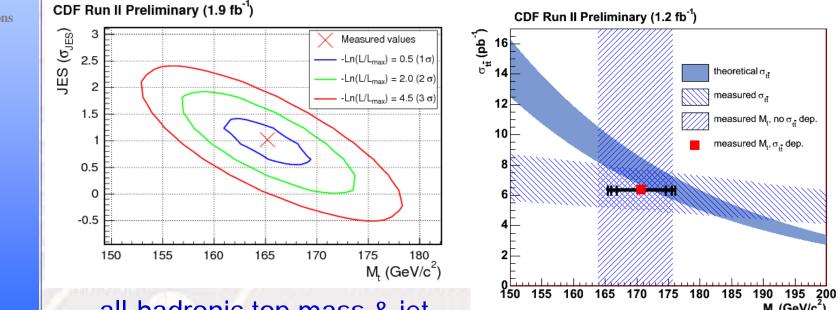
shielded GEM detectortelescope in test beam &T2 geometry in simulation

PECFA midterm report, 18th July 2008

CDF activity


Outline Basic facts

Education


HEP Finland

LHC computing

Conclusions

physics: top mass measurement in all-hadronic and

all-hadronic top mass & jet M₄ (GeV/c²) dileptonic top mass with σ_{tt} energy scale determination constraint (kinematic method) (ideogram technique)

PECFA midterm report, 18th July 2008

theoretical o.,

measured σ_{σ}

measured Μ, no σ, dep.

measured M,, o,, dep.

Centre for Underground Physics, Pyhäsalmi

Outline

Basic facts

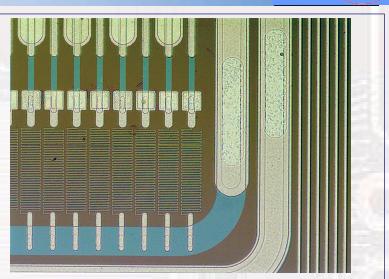
HEP Finland

LHC computing

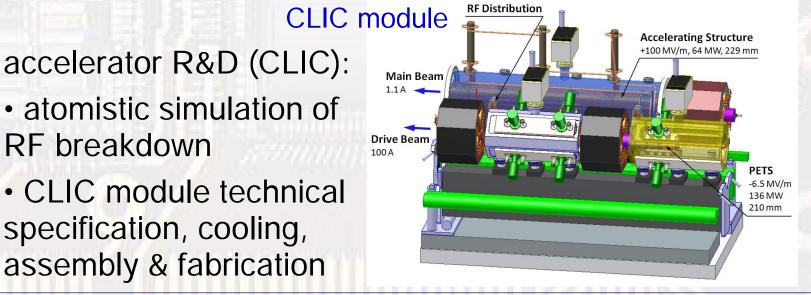
Conclusions

- Pyhäsalmi mine in Pyhäjärvi
 active at least until 2016
- free cavities in old mine
- depth 1444 m (4000 m.w.e.)
- lab run by University of Oulu (EU funded)
- main activity: Experiment with MultiMuon Array (EMMA)
- measures cosmic ray muons shallow underground to confirm CERN
 anomalies on multiple muon bundles
- possible future site for a very large underground facility; strengths: exceptionally good rock, northern location, deepest European metal mine.

Detector and accelerator R&D


detector R&D (LHC upgrade):

Basic facts


Outline

- Education
- **HEP Finland**
- LHC computing
- Conclusions
- rad hard silicon detectors: – cryogenic CID (RD39) Czochralski (RD50) - (semi-)3D (EUDET)
- large area & rad hard MPGD (RD51 proposal)

atomistic simulation of

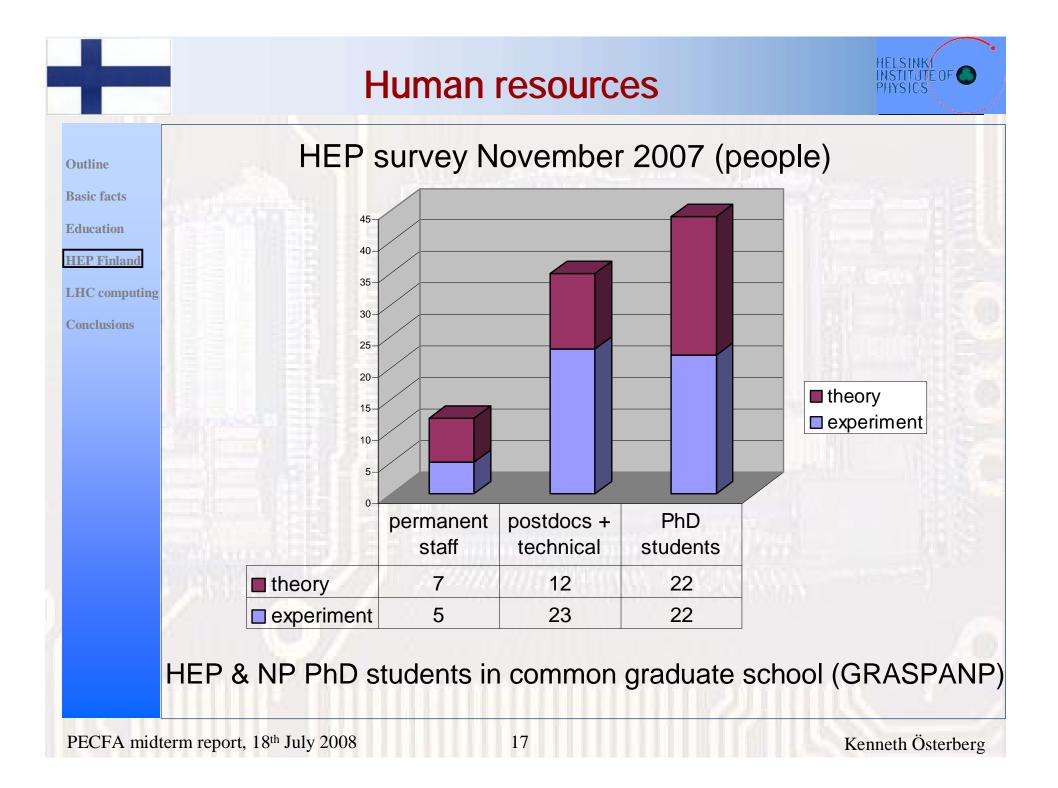
specification, cooling, assembly & fabrication

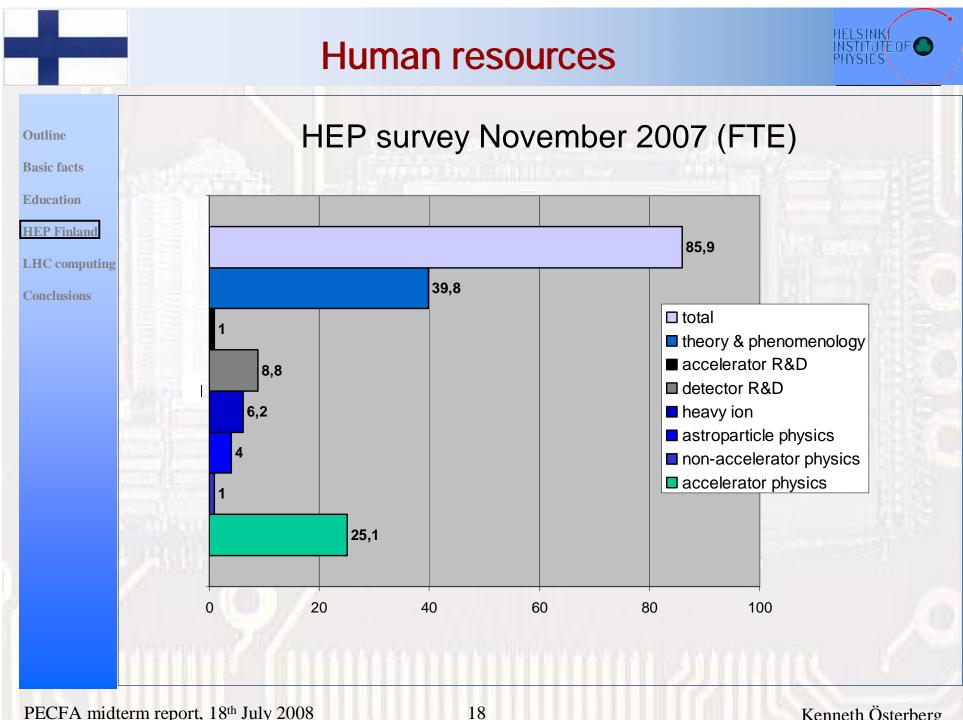
RF breakdown

PECFA midterm report, 18th July 2008

Theory and phenomenology

Outline Basic facts


Education


HEP Finland

Conclusions

LHC computing

- Supersymmetry, Higgs and extradimensional phenomenology
- Heavy ion collision phenomenology
- Theoretical hadron physics
- QCD and numerical QFT
 - Non-commutative QFT
- Neutrino physics
- Cosmology
- String theory

PECFA midterm report, 18th July 2008

Helsinki Institute of Physics (HIP)

Basic facts

Outline

- **HEP Finland**
- LHC computing
- Conclusions
- operated by Universities of Helsinki and Jyväskylä, Helsinki and Lappeenranta Universities of Technology
- budget: 5.8 + 1.1 (external) MCHF (average 2003-6)
- 5 programs: CMS, Nuclear matter (ALICE, ISOLDE), High energy physics (TOTEM, CDF, CLIC), Theory & Technology
- Theory contain projects for LHC phenomenology and atomistic simulation of detector & accelerator material
- Technology supports technology transfer and GRID
- active outreach to high school students & teachers
- active summer student program (partly funded by MoE)
- coordinates also Finnish FAIR and Fermilab activities

(www.hip.fi)

PECFA midterm report, 18th July 2008

Finland and CERN

Finland member of CERN since 1991

- CERN membership fee: 14.4 MCHF (1.41 %)
- Finnish CERN users (any %): 60-70
- **LHC computing** Finnish CERN users (with ≥ 80 % presence): 27
 - Finnish staff members (fellows & associates): 24 (8)
 - Finpro promotes technological & commercial CERN– Finland co-operation; supplies return coefficient: 1.72

Outline

Basic facts

Education

HEP Finland

Conclusions

HEP funding

Outline Basic facts

Education

- **HEP Finland**
- LHC computing

Conclusions

- big portion of funding through HIP
- external funding from Academy of Finland, TEKES (technology & innovation), EU and private fundations
- professors & lecturers mainly funded by Universities, rest mainly by HIP or external funding.
- total funding for experimentation: 4.3 MCHF / year (average 2003-6)

LHC computing

Outline Basic facts Education

HEP Finland

LHC computing

Conclusions

LHC computing resources part of Nordic Data Grid Facility: Tier1 service for ALICE & Tier2 service for CMS (+TOTEM)

Total available and planned CPU, disk and tape storage

	CPU (kSI2k)	Disk (TB)	Tape (TB)
2008	824	171	64
2009	946	302	127

Budget for new investments and maintenance:

800 kEUR / year for 2008–2010.

Technical & scientific computing personnel: ~ 2 FTE / year

<u>HEP specific grid computing</u>: HIP granted first funding only in 2008; built & maintained together with CSC (Finnish Center for Scientific Computing, <u>www.csc.fi</u>)

LHC computing

23

⊖凸?Х

Outline **Basic facts Education HEP Finland** LHC computing Conclusions

General grid computing:13 clusters connected using ARCmiddleware as M-grid for physics, chemistry... (> 3k CPU's)

ARC Grid Monitor

2008-06-30 CEST 10:48:27

Prosessit: Grid Paikallinen

Kohde Maa Akaatti (M-grid) Ametisti (M-grid) Hiekka Jaspis (M-grid, HIP) 16 **Kiniini (CSC)** Kivi (M-grid) + Suomi Kvartsi (M-grid) Mill Murska

Opaali (M-grid)

Sepeli (M-grid)

12 kohdetta

Topaasi (M-grid)

Prosesseja	Kuorma (prosesseja: Grid+paikall.)			Jonottamassa
58	(9+72		0 +0
260		0+90		0 +5
8	1	3+0		0 +0
16	1	3+0		0 +0
16	1	3+0		0 +0
8	0+0 (que	ue inactive)		0 +0
192		0+140		0 +33
60		3+26		0 +3
2176		3+0		0 +0
88		3+28		0 +0
512	1	3+1		0 +0
52		3+1		0 +0
3446	0 + 358			0 + 41

KAIKKI

PECFA midterm report, 18th July 2008

TOTAL

Conclusions

Outline Basic facts

Education

HEP Finland

LHC computing

Conclusions

new since last RECFA visit 2003:

 new chair (from 1 Sep 2008) in experimental elementary particle physics at University of Helsinki (shared with HIP, only 2nd dedicated in Finland)

significant hardware contributions to LHC experiments:

active preparation for LHC data taking & LHC upgrades

succesfully completed, now commissioning & installation

LHC computing funded for 2008–10

not much change:

- average PhD time still longish: 4.5 years (experimental longer than theory: 4.9 vs. 4.1 years)
- lack of sufficient number of long-term post-PhD position