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What Is Quantum Gravity? 
Quantum Gravity = 

• Gravity + 
• Relativity + 
• Quantum Mechanics  

General relativity = Gravity (G) + Relativity (c)  
• Works great IF we ignore fluctuations 
• Eg., GPS accounts for slower time on Earth 

Quantum Mechanics (ℏ) 
• Each degree of freedom MUST fluctuate a little 
• There are a LOT of degrees of freedom! 

 
 



The Problem of Quantum 
Gravity 

For frequency ω QG theory predicts  
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Two problems: 

1. For 𝜔𝜔’s we can reach ℏ𝐺𝐺𝜔𝜔2

𝑐𝑐5
≪ 1 

Eg. FM radio 𝜔𝜔~108Hz  ℏ𝐺𝐺𝜔𝜔2

𝑐𝑐5
~10−71 

2. Theory predicts divergences in 𝛼𝛼1,𝛼𝛼2, ⋯ 
 



Mathematical 
Consistency Isn’t 
Enough 
Gertrude Stein: “The trouble with 
Oakland is that, when you get 
there, there isn’t any there there.” 
 
 
 
String Theorist (on being told the 
2011 Nobel Prize-winning result 
that the universe is accelerating): 
“I’m sure the data is wrong because 
string theory predicts a negative 
cosmological constant. And if it’s 
right, I’ll quit doing physics.” (He’s 
still doing string theory.)  
 
WE NEED DATA! 



Cosmology 
Flat space: 𝑑𝑑𝑠𝑠2 = −𝑐𝑐2𝑑𝑑𝑡𝑡2 + 𝑑𝑑�⃗�𝑥 ∙ 𝑑𝑑�⃗�𝑥 
Cosmology: 𝑑𝑑𝑠𝑠2 = −𝑐𝑐2𝑑𝑑𝑡𝑡2 + 𝑎𝑎2 𝑡𝑡 𝑑𝑑�⃗�𝑥 ∙ 𝑑𝑑�⃗�𝑥 

• 3𝑐𝑐2𝐻𝐻2 = 8𝜋𝜋𝐺𝐺 𝜌𝜌                         E.g.   𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚~
𝑚𝑚0
𝑚𝑚(𝑚𝑚)

3
 

• −3 + 2𝜖𝜖 𝑐𝑐2𝐻𝐻2 = 8𝜋𝜋𝐺𝐺 𝑝𝑝            E.g.   𝑝𝑝𝑟𝑟𝑚𝑚𝑟𝑟 = ⅓ 𝜌𝜌𝑟𝑟𝑚𝑚𝑟𝑟 
Two derivatives: 

• Hubble parameter: 𝐻𝐻(𝑡𝑡) ≡ �̇�𝑚
𝑚𝑚
 

• 1st slow roll parameter: 𝜖𝜖 𝑡𝑡 ≡ − �̇�𝐻
𝐻𝐻2 

Current values: 
• 𝐻𝐻0 = 67.3 ± 1.2 𝑘𝑘𝑚𝑚

𝑠𝑠−𝑀𝑀𝑀𝑀𝑐𝑐
 ~ 2.2 × 10−18𝐻𝐻𝐻𝐻 

• 𝜖𝜖0 = 0.47 ± 0.03 
 



A Cautionary Tale 
All hate Franklin’s signs 
Clever theorists tried to 
avoid this with �̈�𝑎(𝑡𝑡) 

• Before 1998 we were 
CERTAIN �̈�𝑎 𝑡𝑡0 < 0 

• Hence “deceleration 
parameter” 𝑞𝑞 𝑡𝑡 ≡ −𝑚𝑚�̈�𝑚

�̇�𝑚2
 

• But 𝑞𝑞0 = −0.53 ± 0.03 
Moral: don’t believe 
before you see the data 



Brief History of ε(t) 
𝑁𝑁 = # of e-foldings since inflation 
• 𝑎𝑎 𝑡𝑡 = 𝑎𝑎𝑖𝑖 𝑒𝑒𝑁𝑁 
• NB 𝑒𝑒60 ≅ 1026 
• 6000 Mpc now was 2 m then! 
Cosmological Epochs (Roughly) 
1. Late acceleration 59 ≤ 𝑁𝑁 ≤ 60 
2. Matter domination 52 ≤ 𝑁𝑁 ≤ 59 
3. Radiation dom. 5 ≤ 𝑁𝑁 ≤ 52 
4. Reheating −5 ≤ 𝑁𝑁 ≤ 5 
5. Primordial Inflation 𝑁𝑁 ≤ −5 
We can observe early events 
1. Recombination 𝑡𝑡 ≅ 300,000 𝑦𝑦𝑦𝑦𝑠𝑠 
2. Big Bang Nucleosynthesis 

𝑡𝑡 ≅ 1 𝑠𝑠  
NB 𝑡𝑡0 ≅ 13,800,000,000 𝑦𝑦𝑦𝑦𝑠𝑠 



Horizon Problem 
0 = −𝑐𝑐2𝑑𝑑𝑡𝑡2 + 𝑎𝑎2 𝑡𝑡 𝑑𝑑𝑦𝑦2𝑑𝑑𝑦𝑦 = 𝑐𝑐𝑟𝑟𝑚𝑚

𝑚𝑚(𝑚𝑚)
 

CMB in thermal equilibrium to  
1 part in 𝟏𝟏𝟏𝟏𝟓𝟓(better than this room!) Past and Future Light-cones 

• 𝑃𝑃(𝑡𝑡) ≡ ∫ 𝑑𝑑𝑡𝑡𝑑𝑚𝑚0
𝑚𝑚

𝑐𝑐𝑚𝑚0
𝑚𝑚(𝑚𝑚′)

 

• 𝐹𝐹(𝑡𝑡) ≡ ∫ 𝑑𝑑𝑡𝑡𝑑𝑚𝑚
𝑚𝑚𝑖𝑖

𝑐𝑐𝑚𝑚0
𝑚𝑚(𝑚𝑚′)

 

𝑞𝑞 > 0  upper limit dominates 
• ~5000 causally distinct 

regions in equilibrium! 
• ~1017 regions at BBN! 
𝑞𝑞 < 0  lower limit dominates 
• 𝑎𝑎(𝑡𝑡𝑖𝑖) → 0 makes  𝐹𝐹(𝑡𝑡) → ∞ 



QG Effects from Inflation 
observable because: 

1.  
ℏ𝐺𝐺𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖

2

𝑐𝑐5
~10−11  is small but observable  

• Compare     ℏ𝐺𝐺𝐻𝐻0
2

𝑐𝑐5
~10−122 

2. Lots of graviton & MMC scalar production 
3. Long 𝜆𝜆 perturbations “fossilize” so they 

can survive to late times   
 



Energy-Time Uncertainty 
Principle in Flat Space 

Virtual particles of energy 𝐸𝐸 exist for ∆𝑡𝑡 ≅ ℏ
𝐸𝐸
  

Wave number 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

   𝐸𝐸 = 𝑚𝑚2𝑐𝑐4 + 𝑐𝑐2ℏ2𝑘𝑘2 ½ 

This is why 𝑚𝑚 = 0 particles give 𝐹𝐹 𝑦𝑦 ∝ 1
𝑟𝑟2

 forces 
• 𝑚𝑚 = 0  𝐸𝐸 = 𝑐𝑐ℏ𝑘𝑘  ∆𝑡𝑡 ≅  1

𝑐𝑐𝑘𝑘
 

• 𝑦𝑦 = 𝑐𝑐∆𝑡𝑡 = 1
𝑘𝑘
   

• 𝐹𝐹 = ∆𝑀𝑀
∆𝑚𝑚

= ℏ𝑘𝑘
1 𝑐𝑐𝑘𝑘⁄ = ℏ𝑐𝑐

𝑟𝑟2
 

Also why 𝑚𝑚 ≠ 0 particles give short range forces 
• 𝑚𝑚 ≠ 0  𝐸𝐸 ~ 𝑚𝑚𝑐𝑐2  ∆𝑡𝑡 ≅ ℏ

𝑚𝑚𝑐𝑐2
  

• 𝑦𝑦 = 𝑐𝑐∆𝑡𝑡 = ℏ
𝑚𝑚𝑐𝑐

  fixed 



Any inflationary virtual with 
𝑐𝑐𝑘𝑘 < 𝐻𝐻 𝑡𝑡 𝑎𝑎(𝑡𝑡) lives forever 

𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

 fixed but  𝑘𝑘
𝑚𝑚(𝑚𝑚)

 physical, hence 

𝐸𝐸 𝑡𝑡, 𝑘𝑘 = 𝑚𝑚2𝑐𝑐4 +
𝑐𝑐ℏ𝑘𝑘
𝑎𝑎(𝑡𝑡)

2 ½

 

Virtuals can live for ∫ 𝑑𝑑𝑡𝑡𝑑𝑚𝑚+∆𝑚𝑚
𝑚𝑚 𝐸𝐸(𝑡𝑡′,𝑘𝑘) ≅ ℏ 

𝑚𝑚 = 0 virtuals have 𝑐𝑐ℏ𝑘𝑘 ∫ 𝑑𝑑𝑑𝑑′
𝑎𝑎(𝑑𝑑′)

𝑚𝑚+∆𝑚𝑚
𝑚𝑚 ≅ ℏ 

• We just saw this integral! 
• For inflation can take ∆𝑡𝑡 → ∞  𝑐𝑐ℏ𝑘𝑘

𝐻𝐻 𝑚𝑚 𝑚𝑚(𝑚𝑚)
≅ ℏ 



A Killer Symmetry: 
Conformal Invariance 

• 𝑑𝑑η ≡ 𝑑𝑑𝑑𝑑
𝑎𝑎(𝑑𝑑)  d𝑠𝑠2 = 𝑎𝑎2 −𝑑𝑑η2 + 𝑑𝑑𝑥𝑥2 𝑔𝑔𝜇𝜇ν = 𝑎𝑎2η𝜇𝜇ν 

• Conformal transformation using Ω(η, 𝑥𝑥) 
• 𝑔𝑔𝜇𝜇ν → Ω2𝑔𝑔𝜇𝜇ν      ,        ψ → Ω−3/2ψ 
• 𝐴𝐴𝜇𝜇 → 𝐴𝐴𝜇𝜇            ,          𝜑𝜑 → Ω−1𝜑𝜑 

• For example, ℒ𝐸𝐸𝑀𝑀 = −¼𝐹𝐹𝜇𝜇ν𝐹𝐹𝜌𝜌𝜌𝜌𝑔𝑔𝜇𝜇𝜌𝜌𝑔𝑔ν𝜌𝜌 −𝑔𝑔 
• Conformal invariance  same ℒ as flat 

• Emission rate 𝑟𝑟𝑁𝑁
𝑟𝑟η

= Γ𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚   𝑟𝑟𝑁𝑁
𝑟𝑟𝑚𝑚

= Γ𝑖𝑖𝑓𝑓𝑎𝑎𝑑𝑑
𝑚𝑚(𝑚𝑚)

 

• Any emitted virtual lives forever, but few emitted 



Exceptions: MMC scalars & 
gravitons 

• 𝐿𝐿 = 𝑚𝑚
2 [�̇�𝑞2 − 𝜔𝜔2𝑞𝑞2] 𝑞𝑞 𝑡𝑡 = 𝛼𝛼𝛼𝛼 𝑡𝑡 + 𝛼𝛼†𝛼𝛼∗ 𝑡𝑡  

• 𝑟𝑟
𝑟𝑟𝑚𝑚

𝑚𝑚�̇�𝛼 + 𝑚𝑚𝜔𝜔2𝛼𝛼 = 0   𝛼𝛼 𝑡𝑡 = ℏ
2𝑚𝑚𝑚𝑚 Exp −𝑖𝑖 ∫ 𝑑𝑑𝑡𝑡𝑑𝑚𝑚

𝑚𝑚𝑖𝑖
𝜔𝜔  

• 𝐸𝐸 𝑡𝑡 = Ω 𝑚𝑚
2 �̇�𝑞

2(𝑡𝑡) + 𝜔𝜔2𝑞𝑞2(𝑡𝑡) Ω = 𝑚𝑚
2 �̇�𝛼(𝑡𝑡) 2 + 𝜔𝜔2 𝛼𝛼(𝑡𝑡) 2 = ½ℏ𝜔𝜔 

• ℒ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚3

2𝑐𝑐2
�̇�𝜑2 − 𝑐𝑐2 𝛻𝛻𝜑𝜑

2

𝑚𝑚2
each 𝑘𝑘 SHO with 𝑚𝑚 𝑡𝑡 = 𝑎𝑎3

𝑐𝑐2
 & 𝜔𝜔 𝑡𝑡 = 𝑐𝑐𝑐𝑐

𝑎𝑎  

• 𝛼𝛼 𝑡𝑡, 𝑘𝑘 = ℏ𝑐𝑐
2𝑐𝑐𝑎𝑎2(𝑑𝑑) 1 + 𝑖𝑖𝐻𝐻𝑚𝑚(𝑚𝑚)

𝑐𝑐𝑘𝑘
Exp −𝑖𝑖 ∫ 𝑑𝑑𝑡𝑡𝑑𝑚𝑚

𝑚𝑚𝑖𝑖
𝑐𝑐𝑘𝑘
𝑚𝑚(𝑚𝑚′)

  for  𝜖𝜖 = 0 

• 𝐸𝐸 𝑡𝑡, 𝑘𝑘 = 𝑚𝑚3(𝑚𝑚)
2𝑐𝑐2

�̇�𝛼(𝑡𝑡, 𝑘𝑘) 2 + 𝑐𝑐2𝑘𝑘2

𝑚𝑚2(𝑚𝑚)
𝛼𝛼(𝑡𝑡, 𝑘𝑘) 2 = ℏ𝑐𝑐𝑘𝑘

𝑚𝑚(𝑚𝑚)
½ + 𝐻𝐻𝑚𝑚(𝑚𝑚)

2𝑐𝑐𝑘𝑘

2
 

• Each 𝑘𝑘 has 𝑁𝑁 𝑡𝑡, 𝑘𝑘 = 𝐻𝐻𝑚𝑚(𝑚𝑚)
2𝑐𝑐𝑘𝑘

2
     conformal has 𝑁𝑁(𝑡𝑡, 𝑘𝑘) = 0 

• NB 𝛼𝛼(𝑡𝑡, 𝑘𝑘) 2 → ℏ𝐻𝐻2

2𝑐𝑐𝑘𝑘3
   a constant!     conformal has 𝛼𝛼(𝑡𝑡, 𝑘𝑘) → 0 



We Have Data! 
• Scalar Power spectrum 

∆ℛ2 𝑘𝑘 =  𝐴𝐴𝑠𝑠
𝑘𝑘
𝑘𝑘0

𝑛𝑛𝑠𝑠−1

               

𝐴𝐴𝑠𝑠 = 2.196−0.060
+0.051 × 10−9 

𝑛𝑛𝑠𝑠 = 0.9603 ± 0.0073 
                𝑘𝑘0 = 0.050 𝑀𝑀𝑝𝑝𝑐𝑐−1 
• Tensor-to-Scalar ratio 

𝑦𝑦(𝑘𝑘) ≡
∆ℎ2(𝑘𝑘)
∆ℛ2 (𝑘𝑘)

 

𝑦𝑦(0.002 𝑀𝑀𝑝𝑝𝑐𝑐−1) < 0.09 
• Many new polarization probes 
• Already 107 data points 
• Factor of 1014 increase in 21 cm 

radiation from early structures 



This is quantum gravitational data! 
The first ever collected! 

1. “It’s not QG if it’s only tree order” 
• ∆ℛ2  & ∆ℎ2  ~ ℏ𝐺𝐺     it’s quantum gravity 
• Famous tree effects in QFT: 
Bhabha scattering (QED) & beta decay (weak int) 

2. “It’s not QG if it doesn’t involve gravitons” 
• Solar system tests response to classical matter 
• ∆ℛ2 (𝑘𝑘) tests response to quantum matter  
• More interesting for QG than gravitons 

3. “It’s not QG if we can’t predict it uniquely” 
• Rotation curves & Hubble plots measure gravity 
• Even though we don’t understand what drives them  



1. Discretization to solve UV no longer viable 
• Minimum ∆𝑥𝑥 cuts off UV divergences 

But QG only small if ∆𝑥𝑥2 ≫ ℏ𝐺𝐺
𝑐𝑐3

~ 10−35𝑚𝑚 2 

• QG effects small at 𝑡𝑡𝑘𝑘 with  𝑚𝑚0
𝑚𝑚(𝑚𝑚𝑐𝑐)

 ~ 𝑒𝑒110 ~ 1048 
𝑎𝑎 𝑡𝑡𝑘𝑘 ∆𝑥𝑥 ~ 10−35𝑚𝑚      𝑎𝑎0∆𝑥𝑥 ~ 1013𝑚𝑚 

2. Failing to quantize gravity no longer viable 
• 𝑅𝑅𝜇𝜇ν − ½𝑔𝑔𝜇𝜇ν𝑅𝑅 = 8𝜋𝜋𝐺𝐺

𝑐𝑐4
ψ 𝑇𝑇𝜇𝜇ν ψ  

• But ψ 𝑇𝑇𝜇𝜇ν ψ  has no fluctuations! 

Impact on Quantum Gravity 



A Tomograph is better than an X-ray! 

• CMB from entire path 
• 𝑁𝑁 ~ ℓ𝑚𝑚𝑚𝑚𝑚𝑚2  
• ℓ𝑚𝑚𝑚𝑚𝑚𝑚 ~ 3000 

• 21 cm redshift fixes 
WHERE it came from 
• 𝑁𝑁 ~ ℓ𝑚𝑚𝑚𝑚𝑚𝑚3  
• ℓ𝑚𝑚𝑚𝑚𝑚𝑚 ~ 107 
• Data to resolve one loop 

• Not easy, or quick 
1. Lunar radio telescope 
2. Superb astrophysics 
3. Unique inflation model 

 



Scalars & gravitons alter 
kinematics of other quanta 

• Vacuum polarization  𝑖𝑖[𝜇𝜇Πν](𝑥𝑥; 𝑥𝑥′) 
 

 
• Quantum-corrected Maxwell Equation 
𝜕𝜕ν −𝑔𝑔𝑔𝑔ν𝜌𝜌𝑔𝑔𝜇𝜇𝜌𝜌𝐹𝐹𝜌𝜌𝜌𝜌(𝑥𝑥) + �𝑑𝑑4𝑥𝑥𝑑[𝜇𝜇Πν](𝑥𝑥; 𝑥𝑥𝑑) 𝐴𝐴ν 𝑥𝑥′ = 𝐽𝐽𝜇𝜇(𝑥𝑥) 

• 𝐽𝐽𝜇𝜇 𝑥𝑥 = 0   dynamical photons 
• 𝐽𝐽𝜇𝜇(𝑥𝑥) ≠ 0   electromagnetic forces 



Known Secondary Effects 

MMC Scalar Effects 
1. On themselves 

• Brunier, Kahya, Onemli 
2. On fermions 

• Garbrecht, Prokopec 
3. On photons 

• Degueldre, Prokopec, 
Tornkvist 

4. On gravitons 
• Leonard, Park, Prokopec 

Graviton Effects 
1. On scalars 

• Kahya, Park 
2. On fermions 

• Miao 
3. On photons 

• Glavan, Leonard, Miao, 
Prokopec 

4. On gravitons 
• Mora, Tsamis 



Conclusions  Dawning 
 “Golden Age” of QG 

• QG from primordial inflation small but observable 

1.  𝐻𝐻𝑖𝑖𝑛𝑛𝑓𝑓~1056 × 𝐻𝐻0  
ℏ𝐺𝐺𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖

2

𝑐𝑐5
~10−11 

2.  𝜖𝜖𝑖𝑖𝑛𝑛𝑓𝑓 < 0.0056 gravitons & MMC scalars have 𝑁𝑁(𝑡𝑡, 𝑘𝑘)~ 𝐻𝐻𝑚𝑚
2𝑐𝑐𝑘𝑘

2
 

3. Fossilized perturbations survive to late times 
• Primary effects 

• ∆ℛ2 (𝑘𝑘)~ ℏ𝐺𝐺𝐻𝐻2(𝑚𝑚𝑐𝑐)
𝜋𝜋𝑐𝑐5𝜖𝜖(𝑚𝑚𝑐𝑐)

 (resolved)              ∆ℎ2(𝑘𝑘)~ 16ℏ𝐺𝐺𝐻𝐻2(𝑚𝑚𝑐𝑐)
𝜋𝜋𝑐𝑐5

 (not yet)  
• Secondary effects  loops & kinematics of other quanta 

• Enough data to eventually resolve 
• Crucial questions 

1. What is causing late time acceleration? 
2. What drove primordial inflation? 
3. What are the observables? 
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