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Main difficulties

Lack of experimental data
No quantum gravitational effect has been detected

Technical obstructions
Quantum theory requires a fixed, non-dynamical background metric
In GR, spacetime is a physical and dynamical system

Conceptual difficulties
The problem of time
Lack of a manifest local description of dynamics
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Locality

Locality is not manifest in QT and arises dynamically:

In quantum field theory in Minkowski spacetime, causally separated systems
are independent; cluster decomposition of the S-matrix: S= S1S2

We can separate the system from the rest of the universe.
The notion of causal separation relies on the background metric. In a
background independent context there is no way to isolate the system from the
rest of the universe.

Daniele Colosi (UNAM) General Boundary Formulation Windows on Quantum Gravity 28.10.2015 5 / 23



Locality

Locality is not manifest in QT and arises dynamically:
In quantum field theory in Minkowski spacetime, causally separated systems
are independent; cluster decomposition of the S-matrix: S= S1S2

We can separate the system from the rest of the universe.

The notion of causal separation relies on the background metric. In a
background independent context there is no way to isolate the system from the
rest of the universe.

Daniele Colosi (UNAM) General Boundary Formulation Windows on Quantum Gravity 28.10.2015 5 / 23



Locality

Locality is not manifest in QT and arises dynamically:
In quantum field theory in Minkowski spacetime, causally separated systems
are independent; cluster decomposition of the S-matrix: S= S1S2

We can separate the system from the rest of the universe.
The notion of causal separation relies on the background metric. In a
background independent context there is no way to isolate the system from the
rest of the universe.

Daniele Colosi (UNAM) General Boundary Formulation Windows on Quantum Gravity 28.10.2015 5 / 23



Conclusion
The standard formulation of QT has limitations that obstruct its application in a
general relativistic context.

Question
Can we sufficiently extend the standard formulation of QT in order to render it
compatible with the symmetries of GR?

no explicit reference to a background (space)time
description of physics in a manifestly local way
ability to reproduce known physics

YES, using:
The mathematical framework of topological quantum field theory.
A generalization of the Born rule.
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Basic structures

In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime):
hypersurfaces: oriented manifolds of dimension d− 1
regions: oriented manifolds of dimension d with boundary

M

ρM

O
ρO

M

Σ

HΣ

Algebraic structures:
To Σ a Hilbert spaceHΣ
To M a linear amplitude map
ρM :H∂ M →C
As in AQFT, observables are
associated to spacetime regions: An
observable O in a region M is a linear
map ρO

M :H∂ M →C, called
observable map.
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Core axioms
These algebraic structures are subject to a number of axioms, in the spirit of TQFT.

If Σ denote Σ with opposite orientation, thenHΣ =H
∗
Σ

.
(Decomposition rule) If Σ=Σ1 ∪Σ2, thenHΣ =HΣ1

⊗HΣ2
.

(Gluing rule) If M and N are adjacent regions, then ρM∪N = ρM ◦ρN . The
composition ◦ involves a sum over a complete basis on the boundary
hypersurface Σ shared by M and N .

M N
ΣΣM

ΣN

ρM∪N (ψM ⊗ψN ) = ρM ◦ρN (ψM ⊗ψN ) =
∑

i

ρM (ψM ⊗ ξi)ρN (ξ
∗

i ⊗ψN )

where ψM ∈HM , ψN ∈HN and {ξi} is an ON-basis ofHΣ.
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Generalized probability interpretation

In quantum theory, probabilities are generally conditional probabilities: probability
to observe a specific state given that some other specific state was prepared. Then
probability depends on two type of data: preparation and observation.

In the GBF, both type of data encoded through closed subspaces of the state space
H∂ M :

S ⊂H∂ M representing preparation
A ⊂H∂ M representing observation

The probability that the system is described byA given that it is described by S is:

P(A|S ) =
|ρM ◦PS ◦PA |2

|ρM ◦PS |2
=

∑

i∈J |ρM (ξi)|2
∑

i∈I |ρM (ξi)|2

PS and PA are the orthogonal projectors onto the subspaces.
{ξi}i∈I is an ON-basis of S , {ξi}i∈J is an ON-basis ofA .
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Recovering of standard results (I)

A consistent probability interpretation exists and standard probabilities and
expectation values can be recovered from the maps.

Standard transition amplitudes of QFT can be recover from the GBF:

Spacetime region:
M = [t1, t2]×R3

Boundary: ∂ M =Σ1 ∪Σ2
State space: H∂ M =HΣ1

⊗H ∗
Σ2 t1

t2

M

Σ2 → H ∗
t2
3 ηt2

Σ1 → Ht1
3ψt1

x

t

ρ[t1,t2]
(ψt1
⊗ηt2

) = 〈η|U(t1, t2)|ψ〉
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Recovering of standard results (II)

The generalized probability reduces to a standard transition probability for a
standard transition amplitude.
The preparation corresponds to the subspace S =ψ⊗Ht2

⊂H∂ M .
The observation corresponds to the subspaceA =Ht1

⊗η⊂H∂ M .

P(A|S ) =
|ρM ◦PS ◦PA |2

|ρM ◦PS |2
=
|ρM (ψ⊗η)|2

1
= |〈η|U(t1, t2)|ψ〉|

2

Conventional expectation values of observable can be recovered

t1

t2

M

ηt2

ψt1

x

t

O
lim
t2→t1

ρO
[t2,t1]
(ψ⊗η) = ρO

[t1,t1]
(ψ⊗η) = 〈η|Ô|ψ〉
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Advantages of the GBF

The general boundary formulation appears to be interesting for several reasons,
1 it is development of standard quantum theory compatible with known physics;
2 the versatility of the GBF, where general spacetime regions are considered,

offers a new perspective on QT and its foundations and a better understanding
of its geometrical aspects (holographic principle, boundaries, horizons);

3 it can treat situations where standard QT fails:
É QFT in presence of a static black hole (rigorous treatment implementable with the

hypercylinder geometry)
É S-matrix in Anti-de Sitter spacetime;

4 it may solve some of the conceptual problems of background independent
QFT (problem of time, local description of dynamics).

5 it is compatible with other approaches to quantum gravity (Spin Foam models,
Group Field Theory)
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GBF and QFT

Standard QFT can be formulated within the GBF
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How to proceed?

quantization processClassical
field theory

GBQFT

HolomorphicSchrödinger-Feynman

Results:
An isomorphism can be constructed between the Hilbert spaces in the two
representations
The GBF axioms are satisfied by these quantization prescriptions
Standard QFT fits into the GBF.
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Schrödinger-Feynman quantization
Schrödinger representation + Feynman path integral quantization
The state spaceHΣ for a hypersurface Σ is the space of functions on field
configurations KΣ on Σ.
Inner product,

〈ψ2|ψ1〉=
∫

KΣ

Dϕψ1(ϕ)ψ2(ϕ).

Amplitude for a region M, ψ ∈H∂ M ,

ρM (ψ) =
∫

K∂ M

Dϕψ(ϕ)
∫

KM ,φ|∂ M=ϕ
Dφ eiSM (φ).

A classical observable F in M is modeled as a function on KM . The quantization
of F is the linear map ρF

M :H∂ M →C defined as

ρF
M (ψ) =

∫

K∂ M

Dϕψ(ϕ)
∫

KM ,φ|∂ M=ϕ
DφF(φ)eiSM (φ).
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Holomorphic quantization (I)

Linear field theory: LΣ is the vector space of solutions near the hypersurface Σ.
LΣ carries a non-degenerate symplectic structureωΣ and a complex structure
JΣ : LΣ→ LΣ compatible with the symplectic structure:

J2
Σ
=−idΣ and ωΣ(JΣ(·), JΣ(·)) =ωΣ(·, ·).

JΣ andωΣ combine to a real inner product gΣ(·, ·) = 2ωΣ(·, JΣ·) and to a
complex inner product {·, ·}Σ = gΣ(·, ·)+ 2iωΣ(·, ·) which makes LΣ into a
complex Hilbert space.
The Hilbert spaceHΣ associated with Σ is the space of holomorphic functions
on LΣ with the inner product

〈ψ,ψ′〉Σ =
∫

LΣ

ψ(φ)ψ′(φ)exp
�

−
1

2
gΣ(φ,φ)

�

dµ(φ),

where µ is a (fictitious) translation-invariant measure on LΣ.
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Holomorphic quantization (II)

The amplitude map ρM :H∂ M →C associated with the spacetime region M for
a state ψ ∈H∂ M is given by

ρM (ψ) =
∫

LΣ

ψ(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).

The observable map associated to a classical observable F in a region M is

ρF
M (ψ) =

∫

LΣ

ψ(φ)F(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).
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Klein-Gordon theory in Minkowski

The S-matrix technique is used to describe interacting QFT:

Spacetime region:
M = [t1, t2]×R3

Boundary: ∂ M =Σ1 ∪Σ2
State space: H∂ M =HΣ1

⊗H ∗
Σ2 t1

t2

M

Σ2 → H ∗
t2
3 ηt2

Σ1 → Ht1
3ψt1

x

t

Assume interaction is relevant only between the initial time t1 and the final time t2.
The S-matrix is the asymptotic limit of the amplitude between free states at early
and at late time:

〈ψ2|S |ψ1〉= lim
t1→−∞

t2→+∞
〈ψ2|Uint(t1, t2)|ψ1〉= lim

t1→−∞
t2→+∞

ρU
[t1,t2]×R3(ψ1⊗ψ

∗
2)
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Spatially asymptotic S-matrix

Similarly, we can describe interacting QFT via a
spatially asymptotic amplitude. Assume interac-
tion is relevant only within a radius R from the
origin in space (but at all times). Consider then the
asymptotic limit of the amplitude of a free state on
the hypercylinder when the radius goes to infinity:

S (ψ) = lim
R→∞

ρR(ψ)

Result
The S-matrices are equivalent when both are valid.
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Conclusions

The general boundary formulation is a new powerful formulation of quantum
theory.
Many results have been obtained:
É quantisation prescriptions (description of quantum states on timelike

hypersurfaces) [Oeckl 2008, Oeckl 2012]
É unitarity of evolution for QFT in curved space [DC, Oeckl 2011]
É new S-matrices type asymptotic amplitudes [DC, Oeckl 2008; DC 2009; Dohse

2011; 2012]
É GBQFT in Euclidean space [DC, Oeckl 2009]
É de Sitter (derivation of the Polyakov propagator) [DC 2010; 2015]
É Anti de Sitter (S-matrix for the hyper cylinder) [DC, Dohse, Oeckl 2012]
É Rindler [DC, Rätzel 2014]
É Unruh effect [DC, Rätzel 2012]

It is a work in progress...
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