f(Lovelock) theories of gravity

Pablo Antonio Cano Molina-Niñirola

based on

P. Bueno, P. A. Cano, P.F. Ramírez, f(Lovelock) theories of gravity. To appear.

Windows on Quantum Gravity: season II Madrid, October 30, 2015

Introduction

- 2 Variational problem in f(Lovelock)
- 3 Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
- 4 Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
- 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED
- Conclusions

(日) (同) (日) (日)

Introduction

Introduction

- Variational problem in *f*(Lovelock)
- 3 Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
 - Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
- 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED
- 6 Conclusions

Introduction

Higher order gravities:

- The EH action should be modified by quantum corrections. String Theory predicts an infinite series of higher order curvature terms.
- Cosmology. Inflation and accelerated expansion.
- Holography. The addition of higher curvature terms in the action allows us to extract information about general CFTs (*e.g.*, a free scalar).Bueno, Myers, Witczak-Krempa; Brigante; Kats; de Boer
- Well-known higher order theories:
 - f(R). Useful in cosmology models. Equivalent to a scalar-tensor theory. e.g., Sotiriou, Faraoni
 - Output: Construction of the second order equations. Lanczos; Lovelock
- f(Lovelock) gravity is a natural generalization of f(R) and Lovelock theories

Introduction

2 Variational problem in f(Lovelock)

- 3 Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
 - Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
- 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED
- 6 Conclusions

J

The f(Lovelock) action is given by

$$S = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} f(\mathcal{L}_{1}, \mathcal{L}_{2}, ..., \mathcal{L}_{\lfloor D/2 \rfloor}),$$
(1)

where \mathcal{L}_n are the Euler densities (ED)

$$\mathcal{L}_{n} = \frac{1}{2^{n}} \delta^{\mu_{1}...\mu_{2p}}_{\nu_{1}...\nu_{2n}} R^{\nu_{1}\nu_{2}}_{\mu_{1}\mu_{2}}...R^{\nu_{2n-1}\nu_{2n}}_{\mu_{2n-1}\mu_{2n}}.$$
(2)

 $\mathcal{L}_n = 0$ if D < 2n and $\sqrt{-g}\mathcal{L}_n$ is topological if D = 2n. The previous action (1) reduces to Lovelock-Lanczos and f(R) theories when we choose f to be a linear combination of the ED or an arbitrary function of $R = \mathcal{L}_1$:

$$f_{LL} = \sum_{n=0}^{\lfloor D/2 \rfloor} \lambda_n L^{2n-2} \mathcal{L}_n, \quad f_R = f(R),$$
(3)

where *L* is a length scale and λ_n are dimensionless couplings.

Pablo Antonio Cano Molina-Niñirola

The variation of the action is

$$\delta S = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} \mathcal{E}_{\mu\nu} \delta g^{\mu\nu} + \frac{1}{16\pi G} \int_{\partial M} d^{D-1} x \sqrt{|h|} \sum_{n=1}^{\lfloor D/2 \rfloor} \partial_{n} f \delta v_{n}^{\mu} n_{\mu}, \quad (4)$$

where n_{μ} is the normal vector to the boundary and $h_{\mu\nu}$ is the induced metric on ∂M . Also, we have

$$\mathcal{E}_{\mu\nu} = \sum_{n=1}^{\lfloor D/2 \rfloor} \left[\mathcal{E}_{\mu\nu}^{(n)} + \frac{1}{2} g_{\mu\nu} \mathcal{L}_n - 2 P_{\lambda\mu\alpha\nu}^{(n)} \nabla^\alpha \nabla^\lambda \right] \partial_n f - \frac{1}{2} g_{\mu\nu} f, \qquad (5)$$

$$\delta v_n^\mu = 2 g^{\beta\sigma} P_{\alpha\beta}^{(n)\mu\nu} \nabla^\alpha \delta g_{\nu\sigma}. \qquad (6)$$

The field equations are

$$\mathcal{E}_{\mu\nu} = 0. \tag{7}$$

4 **A** N A É

- Fourth order equations
- Variational problem not well-defined: we need to set $\partial_{\alpha} \delta g_{\mu\nu}\Big|_{\partial M} = 0$

Boundary contribution

$$S = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} \mathfrak{L} - \frac{1}{16\pi G} \int_{\partial M} d^{D-1} x \sqrt{|h|} \mathcal{B}.$$
 (8)

	£	Boundary term ${\cal B}$	B. conditions
GR	R	-2K Gibbons, Hawking; York	$\delta h_{\mu u} = 0$
f(R)	f(R)	-2f'(R)K Madsen, Barrow	$\delta h_{\mu u} = 0, \ \delta R = 0$
Lovelock	\mathcal{L}_n	Q_n Verwimp	$\delta h_{\mu u} = 0$
f(Lovelock)	$f(\mathcal{L}_1,,\mathcal{L}_{\lfloor D/2 \rfloor})$???	???

$$Q_n \equiv -2n \int_0^1 dt \delta^{\mu_1 \dots \mu_{2n-1}}_{\nu_1 \dots \nu_{2n-1}} K^{\nu_1}_{\mu_1} \Big(\frac{1}{2} R^{\nu_2 \nu_3}_{\mu_2 \mu_3} - t^2 K^{\nu_2}_{\mu_2} K^{\nu_3}_{\mu_3} \Big) \dots \Big(\frac{1}{2} R^{\nu_{2n-2} \nu_{2n-1}}_{\mu_{2n-2} \mu_{2n-1}} - t^2 K^{\nu_{2n-2}}_{\mu_{2n-2}} K^{\nu_{2n-1}}_{\mu_{2n-1}} \Big),$$

 $K_{\mu\nu}$ extrinsic curvature of ∂M . In f(Lovelock) we **propose** the following boundary term

$$\mathcal{B}_{f(\text{Lovelock})} = \sum_{n=1}^{\lfloor D/2 \rfloor} \partial_n f(\mathcal{L}) Q_n.$$
(9)

3

The full **f(Lovelock)** action is then

$$S_{f} = \frac{1}{16\pi G} \int_{M} d^{D}x \sqrt{-g} f(\mathcal{L}_{1}, ..., \mathcal{L}_{\lfloor D/2 \rfloor}) - \frac{1}{16\pi G} \int_{\partial M} d^{D-1}x \sqrt{|h|} \sum_{n=1}^{\lfloor D/2 \rfloor} \partial_{n} f(\mathcal{L}) Q_{n},$$

$$\tag{10}$$

and the variation when $\delta h_{\mu\nu}=0$ is

$$(16\pi G)\delta S_f\Big|_{\delta h_{\mu\nu}=0} = \int_M d^D x \sqrt{-g} \mathcal{E}_{\mu\nu} \delta g^{\mu\nu} - \int_{\partial M} d^{D-1} x \sqrt{|h|} \sum_{n,m=1}^{\lfloor D/2 \rfloor} \partial_m \partial_n f \delta \mathcal{L}_m Q_n.$$
(11)

In order to extremize the action we must fix also the partial derivatives of f on the boundary:

$$\delta(\partial_n f(\mathcal{L}))\Big|_{\partial M} = 0, \quad n = 1, ..., \lfloor D/2 \rfloor.$$
(12)

The number of independent conditions is equal to $r = \operatorname{rank}(\partial_n \partial_m f)$. Since we have to fix the induced metric $h_{\mu\nu}$ and the derivatives $\partial_n f$, we conclude that the number of physical degrees of freedom in f(Lovelock) theory is

$$n_{\rm dof} = \frac{D(D-3)}{2} + r.$$
 (13)

With respect to GR there are *r* extra degrees of freedom.

Madrid, October 30, 2015 9 / 32

- Introduction
- Variational problem in *f*(Lovelock)
- 3 Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
 - Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
 - 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED
 - 6 Conclusions

Non-degenerate case

Let us consider again the f(Lovelock) action

$$S = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} f(\mathcal{L}_{1}, \mathcal{L}_{2}, ..., \mathcal{L}_{k}), \qquad (14)$$

where $k = \lfloor D/2 \rfloor$. We want to construct an equivalent scalar-tensor theory.

3

Non-degenerate case

Let us consider again the f(Lovelock) action

$$S = \frac{1}{16\pi G} \int_{\mathcal{M}} d^D x \sqrt{-g} f(\mathcal{L}_1, \mathcal{L}_2, ..., \mathcal{L}_k), \qquad (14)$$

where $k = \lfloor D/2 \rfloor$. We want to construct an equivalent scalar-tensor theory. If det $(\partial_n \partial_m f) \neq 0$, f(Lovelock) is equivalent to

$$S' = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} \Big\{ \sum_{p=1}^{k} \varphi_{n} \mathcal{L}_{n} - \tilde{V}(\varphi_{1}, ..., \varphi_{k}) \Big\}.$$
(15)

- \tilde{V} is the Legendre transform of f (which exists because det $(\partial_n \partial_m f) \neq 0$)
- The equivalence can be checked by using the field equation for φ_n : $\mathcal{L}_n = \partial_n \tilde{V}(\varphi)$. It is the inverse Legendre transform.
- This generalizes the case of f(R), which is equivalent to Barrow, Cotsakis

$$S'_{f_R} = \frac{1}{16\pi G} \int_M d^D x \sqrt{-g} \Big\{ \varphi R - \tilde{V}(\varphi) \Big\}.$$
(16)

Degenerate case

In the case in which $det(\partial_n \partial_m f) = 0$ we cannot construct the Legendre transform of f, but it can be shown that f(Lovelock) is equivalent to

$$S' = \int_{M} d^{D}x \sqrt{-g} \Big\{ \sum_{i \in I} \varphi_{i} \mathcal{L}_{i} + \sum_{j \in J} g_{j}(\varphi_{i}) \mathcal{L}_{j} - \tilde{V}(\varphi_{i_{1}}, ..., \varphi_{i_{r}}) \Big\}.$$
(17)

- *I* is a subset of *r* indices and *J* the complementary set. Therefore there are *r* scalars, where $r = \operatorname{rank}(\partial_n \partial_m f)$
- g_j(φ_i) are certain functions and *V*(φ_{i1},...,φ_{ir}) is the semi-Legendre transform of f
- In conclusion, f(Lovelock) gravity is equivalent to a scalar-tensor theory with a number of scalars equal to the rank of the Hessian matrix of f.
- Note that the number of scalars coincide with the number of extra degrees of freedom in f(Lovelock)

Degenerate case

As an example, let us consider the theory

$$S = \frac{1}{16\pi G} \int_{\mathcal{M}} d^4 x \sqrt{-g} \Big\{ -2\Lambda_0 + R + \alpha L^2 R^2 + \beta L^4 R \mathcal{L}_2 + \gamma L^6 \mathcal{L}_2^2 \Big\},$$
(18)

If $4\alpha\gamma\neq\beta^2$ then $r=\operatorname{rank}(\partial_n\partial_m f)=2$, and the equivalent scalar-tensor theory is

$$S' = \frac{1}{16\pi G} \int_{M} d^{4}x \sqrt{-g} \Big\{ -2\Lambda_{0} + \varphi_{1}R + \varphi_{2}\mathcal{L}_{2} - 2\frac{\gamma L^{4}(\varphi_{1}-1)^{2} - \beta L^{2}(\varphi_{1}-1)\varphi_{2} + \alpha\varphi_{2}^{2}}{L^{6}(4\alpha\gamma - \beta^{2})} \Big\}.$$
(19)

On the contrary, if $4\alpha\gamma = \beta^2$, then r = 1 and there is an equivalent scalar-tensor theory with only one scalar:

$$S' = \frac{1}{16\pi G} \int_{M} d^{4}x \sqrt{-g} \bigg\{ -2\Lambda_{0} + \varphi R + \varphi \frac{\beta}{2\alpha} L^{2} \mathcal{L}_{2} - \frac{(\varphi - 1)^{2}}{4\alpha L^{2}} \bigg\}.$$
(20)

Conformal transformation

It is well-known that f(R) theories are equivalent, through a conformal transformation $\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$, to GR plus a minimally coupled scalar:

$$\left|\tilde{S}_{f_{R}}^{\prime}=\frac{1}{1\pi G}\int_{M}d^{D}x\sqrt{-\tilde{g}}\left\{\tilde{R}-\frac{1}{2}\left(\tilde{\nabla}\phi\right)^{2}-U(\phi)\right\}.$$
(21)

Conformal transformation in f(Lovelock)?

- Consider, for example, $f(R, \mathcal{L}_2)$ in D = 4.
- If f is non-degenerate, we have seen that the theory is equivalent to a scalar-tensor theory with two non-dynamical scalars
- If we perform a conformal transformation, the resulting theory is

$$\tilde{S}_{f_{LL}} = \frac{1}{1\pi G} \int_{M} d^{4}x \sqrt{-\tilde{g}} \left\{ \tilde{R} + \varphi \tilde{\mathcal{L}}_{2} + 8\tilde{\nabla}^{\mu}\varphi \tilde{\nabla}^{\nu}\phi \tilde{G}_{\mu\nu} - 6(\tilde{\nabla}\phi)^{2} - 8\tilde{\nabla}^{\mu}\varphi \tilde{\nabla}_{\mu}\phi \tilde{\Theta}\phi - 4\tilde{\Box}\varphi (\tilde{\nabla}\phi)^{2} + 8\tilde{\nabla}^{\mu}\varphi \tilde{\nabla}_{\mu}\phi (\tilde{\nabla}\phi)^{2} - U(\phi,\varphi) \right\}$$
(22)

- Second order equations
- Hordenski-like theory, with two scalars and a coupling to \mathcal{L}_2

Introduction

- Variational problem in f(Lovelock)
- 3 Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
- 4 Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu
 ulphaeta})$ theories
 - 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED
 - 6 Conclusions

Let us parametrize the f(Lovelock) theory in the following way

$$S_f = \frac{1}{16\pi G} \int_M d^D x \sqrt{-g} \Big\{ -2\Lambda_0 + R + \lambda f(\mathcal{L}_1, ..., \mathcal{L}_k) \Big\},$$
(23)

so we make explicit the Einstein-Hilbert term and the cosmological constant. Then, we assume that our background is maximally symmetric, with metric $\bar{g}_{\mu\nu}$. The Riemann tensor of such space is given by

$$\bar{R}^{\mu\nu}_{\alpha\beta} = \Lambda \delta^{\mu\nu}_{\alpha\beta},\tag{24}$$

where Λ is a constant. If we plug this Riemann tensor in the field equations, we find the constraint equation for Λ :

$$2\Lambda_{0} = (D-1)(D-2)\Lambda\left(1 - \frac{2}{D-2}\lambda\partial_{1}f\left(\bar{\mathcal{L}}\right)\right)$$

- $(D-1)(D-2)\lambda\sum_{n=2}^{k}\partial_{n}f\left(\bar{\mathcal{L}}\right)2n\frac{(D-3)!}{(D-2n)!}\Lambda^{n} + \lambda f\left(\bar{\mathcal{L}}\right).$ (25)

where the bar means that we evaluate at the background. This equation gives us the possible vacua of the theory.

Pablo Antonio Cano Molina-Niñirola

We perturbe the metric on this background: $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$. The linearized equations for the metric perturbation read

$$\alpha \Big(\bar{\nabla}_{(\mu|} \bar{\nabla}_{\sigma} h^{\sigma}_{|\nu)} - \frac{1}{2} \bar{\nabla}_{\nu} \bar{\nabla}_{\mu} h - \frac{1}{2} \Box h_{\mu\nu} + \Lambda h_{\mu\nu} - \Lambda h \bar{g}_{\mu\nu} \Big) + \\ + \Big[\bar{g}_{\mu\nu} \Big(\Lambda \beta - \frac{\alpha}{2} \Big) + \frac{\beta}{D-1} \Big(\bar{g}_{\mu\nu} \Box - \bar{\nabla}_{\mu} \bar{\nabla}_{\nu} \Big) \Big] \Big(\bar{\nabla}_{\alpha} \bar{\nabla}_{\beta} h^{\alpha\beta} - \Box h - \Lambda (D-1)h \Big) = 0.$$

$$(26)$$

where α and β are the following constants

$$\alpha = 1 + \lambda \sum_{n=1}^{k} n \partial_{p} f\left(\bar{\mathcal{L}}\right) \frac{(D-3)!}{(D-n-1)!} \Lambda^{n-1},$$

$$\beta = \lambda \sum_{n,m=1}^{k} n m \partial_{n} \partial_{m} f\left(\bar{\mathcal{L}}\right) \frac{(D-2)!(D-1)!}{(D-2n)!(D-2m)!} \Lambda^{n+m-2}.$$
(28)

As an important observation, there is no term $\Box^2 h_{\mu\nu}$, which is related to the presence of massive gravitons.

Pablo Antonio Cano Molina-Niñirola

Finally, we can choose the transverse gauge, $\bar{\nabla}_{\mu}h^{\mu\nu} = \bar{\nabla}^{\nu}h$, and we can identify the physical fields. We have a traceless, massless spin-2 field, $t_{\mu\nu}$, which satisfies the equation

$$-\frac{\alpha}{2} \Big(\Box t_{\mu\nu} - 2\Lambda t_{\mu\nu} \Big) = 0,$$
⁽²⁹⁾

and a scalar mode, $h = h^{\mu}_{\mu}$, which satisfies

$$-\Lambda(D-1)\Big[\big(D\Lambda\beta-\alpha(D/2-1)\big)h+\beta\Box h\Big]=0.$$
(30)

The metric perturbation $h_{\mu\nu}$ can be reconstructed by means of the relation

$$t_{\mu\nu} = \hat{h}_{\mu\nu} - \frac{2}{D-2} \frac{\beta}{\alpha} \Big(\bar{\nabla}_{\mu} \bar{\nabla}_{\nu} h - \frac{\bar{g}_{\mu\nu}}{D} \Box h \Big), \tag{31}$$

where $\hat{h}_{\mu\nu}$ is the traceless part of $h_{\mu\nu}$:

$$\hat{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{D}\bar{g}_{\mu\nu}h.$$
 (32)

We have found that in f(Lovelock) gravity there are no massive gravitons. This is a nice property, because massive gravitons usually behave as ghosts. Are there more theories free of massive gravitons?

- GR (second order equations)
- Lovelock (second order equations)
- *f*(*R*)
- f(Lovelock)
- Quasitopological gravity (cubic curvature theory) Myers, Robinson

• . . .

However, most of higher order gravities contain massive gravitons. For example, $R_{\mu\nu}R^{\mu\nu}$ or $R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta}$. Which conditions must a theory satisfy so it is free of massive gravitons?

Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories

We want to determine the presence of massive gravitons in a theory of the form

$$S = \int_{\mathcal{M}} d^{D} x \sqrt{-g} \mathfrak{L}, \tag{33}$$

where \mathfrak{L} is a scalar function of the Riemann tensor $R_{\mu\nu\sigma\rho}$ and the (inverse) metric $g^{\mu\nu}$. The presence of massive gravitons is related to the term $\Box^2 h_{\mu\nu}$ in the linearized equations.

The result of our analysis is the following: We define

$$C^{\sigma\rho\lambda\eta}_{\mu\alpha\beta\nu} = \frac{\partial}{\partial R_{\sigma\rho\lambda\eta}} \frac{\partial \mathfrak{L}}{\partial R^{\mu\alpha\beta\nu}} \bigg|_{\bar{g}_{ab}}.$$
(34)

On a MSB, the most general form of this tensor is

$$C^{\sigma\rho\lambda\eta}_{\mu\alpha\beta\nu} = aB^{\sigma\rho\lambda\eta}_{\mu\alpha\beta\nu} + b\left(\bar{g}_{\mu\beta}\bar{g}_{\alpha\nu} - \bar{g}_{\mu\nu}\bar{g}_{\alpha\beta}\right)\left(\bar{g}^{\sigma\lambda}\bar{g}^{\rho\eta} - \bar{g}^{\sigma\eta}\bar{g}^{\rho\lambda}\right) + cg_{ab}g^{cd}B^{\sigma\rho\lambda\eta}_{cidj}B^{aibj}_{\mu\alpha\beta\nu}, \tag{35}$$
where $B^{\sigma\rho\lambda\eta}_{\mu\alpha\beta\nu} \equiv \delta^{[\sigma}_{\mu}\delta^{\rho]}_{\alpha}\delta^{[\lambda}_{\beta}\delta^{\eta]}_{\nu} + \delta^{[\lambda}_{\mu}\delta^{\eta]}_{\alpha}\delta^{[\sigma}_{\beta}\delta^{\rho]}_{\nu}.$

Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories

The parameters *a*, *b* and *c* depend on the Lagrangian \mathfrak{L} . We found that the condition for not having massive gravitons is

$$a+2c=0. \tag{36}$$

At the end, this is a constraint equation on the parameters of the theory. For example, there are a lot of cubic gravities, most of them not studied yet, which satisfy this condition.

Corollary

If the Lagrangians $L_1, ..., L_n$ are free of massive gravitons \Rightarrow any theory with Lagrangian $f(L_1, ..., L_n)$ is also free of them.

Introduction

- Variational problem in f(Lovelock)
- Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
 - Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
- 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED

Conclusions

(日) (同) (日) (日)

BPS solution

We consider the theory

$$S = \frac{1}{16\pi G} \int_{M} d^{D}x \sqrt{-g} \left\{ \frac{(D-1)(D-2)}{L^{2}} + R + \alpha L^{2} \mathcal{L}_{2} + \beta L^{2} R^{2} + \gamma L^{4} R \mathcal{L}_{2} + \delta L^{6} \mathcal{L}_{2}^{2} \right\}.$$
 (37)

When the parameters are given by

$$\begin{split} \alpha &=& \frac{\lambda}{(D-2)(D-3)}, \quad \beta = \frac{1}{4(D-1)(D-2)}, \\ \gamma &=& \frac{\lambda}{2(D-1)(D-2)^2(D-3)}, \quad \delta = \frac{\lambda^2}{4(D-1)(D-2)^3(D-3)^3}, \end{split}$$

where λ is arbitrary, we find the following solution

$$ds^{2} = -\left(1 + \frac{r^{2}}{L^{2}}h(r)\right)dt^{2} + \frac{1}{\left(1 + \frac{r^{2}}{L^{2}}h(r)\right)}dr^{2} + r^{2}d\Omega_{(D-2)}^{2}.$$
(38)

where h(r) is the function

$$h(r) = \frac{1}{2\lambda} \left[1 - \sqrt{1 - 4\lambda \left(\frac{2D - 4}{D} + c_1 \frac{L^D}{r^D} + c_2 \frac{L^{D-1}}{r^{D-1}}\right)} \right].$$
 (39)

Pablo Antonio Cano Molina-Niñirola

BPS solution

When the constants satisfy

$$0 < \lambda \leq \frac{D}{8D - 16}, \quad c_1 \leq 0, \quad c_2 \leq -c_1 \Big[\frac{1 - \lambda(8D - 16)/D}{-4\lambda c_1} \Big]^{1/D} D(D - 1)^{1/D - 1}$$
 (40)

the solution exists $\forall r > 0$, it is asymptotically AdS with radius $\tilde{L}^2 = \frac{L^2 D}{4D-8} \left(1 + \sqrt{1 - \lambda \frac{8D-16}{D}}\right)$, there is a curvature singularity at r = 0 and a horizon. Therefore, the solution is an asymptotically AdS black hole. In the limit $\lambda \to 0$ we get

$$ds^{2} = -g(r)dt^{2} + \frac{1}{g(r)}dr^{2} + r^{2}d\Omega_{(D-2)},$$
(41)

where

$$g(r) = 1 + \frac{r^2}{L^2} \frac{2D - 4}{D} + c_1 \frac{L^{D-2}}{r^{D-2}} + c_2 \frac{L^{D-3}}{r^{D-3}}.$$
 (42)

This is a well-known solution of R^2 gravity Ayon-Beato, Garbarz, Giribet, Hassaine . This solution reduces to Reissner-Nordstrom-AdS in D = 4, and to Schwarzcshild-AdS if $c_1 = 0$.

Homogeneous function

In D = 4 the most general f(Lovelock) gravity is

$$S = \frac{1}{16\pi G} \int_M d^4 x \sqrt{-g} f(R, \mathcal{L}_2).$$
(43)

When f is homogeneous of degree 1, this is $f(\alpha R, \alpha \mathcal{L}_2) = \alpha f(R, \mathcal{L}_2)$, and if the derivatives of f are not singular at R = 0, then this theory allows Ricci flat solutions

$$R_{\mu\nu} = 0. \tag{44}$$

We get solutions as Schwarzschild's or Kerr's.

In the case in which f is homogeneous of degree 1, another family of solutions can be found by imposing $\partial_R f(R, \mathcal{L}_2) = 0$. This gives us a equation of the form

$$\alpha R + \beta L^2 \mathcal{L}_2 = 0.$$
(45)

(日) (同) (日) (日)

One ED

Let us consider the theory $S = \int d^D x \sqrt{-g} f(\mathcal{L}_n)$. In some cases, a solution is given by imposing $\mathcal{L}_n = \Lambda^n D! / (D - 2n)! = const$. A solution to this equation is given by

$$ds^{2} = -(1 - \Lambda r^{2}F(r))dt^{2} + \frac{dr^{2}}{1 - \Lambda r^{2}F(r)} + r^{2}d\Omega_{(D-2)}^{2},$$
(46)

where

$$F(r) = \left[1 + \frac{1}{\Lambda^{n}} \left(\frac{c_{1}}{r^{D-1}} + \frac{c_{2}}{r^{D}}\right)\right]^{1/n}.$$
(47)

- In D = 4, n = 1, this is dS/AdS-RN black hole, solution of some R^2 gravities.
- If $c_2 = 0$, the previous is solution of pure Lovelock gravity $\mathcal{L}_n + const$
- If $c_2 = 0$ and the constant value of \mathcal{L}_n is a solution of the equation $2n\mathcal{L}_n f'(\mathcal{L}_n) Df(\mathcal{L}_n) = 0$, then the previous is a solution of $f(\mathcal{L}_n)$ theory.
- Funny situation: $\Lambda = c_2 = 0$, D = 3n + 1: Schwarzschild-like solution!

$$ds^{2} = -(1 - r_{0}/r)dt^{2} + \frac{dr^{2}}{1 - r_{0}/r} + r^{2}d\Omega_{(D-2)}^{2}, \qquad (48)$$

イロト 不得下 イヨト イヨト 二日

Conclusions

Introduction

- Variational problem in f(Lovelock)
- Equivalence with scalar-tensor theory
 - Non-degenerate case
 - Degenerate case
 - Conformal transformation
 - Linearized equations
 - Massive gravitons in general $\mathcal{L}(R_{\mu\nu\alpha\beta})$ theories
- 5 Black holes
 - BPS solution
 - Homogeneous function
 - One ED

Conclusions

Conclusions

- We have computed the variation of *f*(Lovelock) action and we have proposed a generalized boundary contribution which sets the variational problem well-posed.
- By counting the quantities that must be fixed on the boundary we found that, with respect to GR, there are $r = \operatorname{rank}(\partial_n \partial_m f)$ extra degrees of freedom.
- We have shown that f(Lovelock) gravity is equivalent to a scalar-tensor theory with r scalars.
- We have computed the linearized equations and we have found that in f(Lovelock) there is a massless, traceless spin-2 graviton and a scalar mode, but there is no massive graviton.
- We have developed a general procedure in order to determine the presence of massive gravitons in any *L*(*R*_{μναβ}) theory.
- We have found several exact solutions of certain f(Lovelock) theories, some of them represent static and regular black holes.

Conclusions

Thank you for your attention

2

<ロ> (日) (日) (日) (日) (日)

Bonus

Let us consider the f(Lovelock) action

$$S = \frac{1}{16\pi G} \int_{M} d^{D}x \sqrt{-g} f(\mathcal{L}_{1}, \mathcal{L}_{2}, ..., \mathcal{L}_{\lfloor D/2 \rfloor}).$$
(49)

Is this theory equivalent to this other one, with $k = \lfloor D/2 \rfloor$ scalar fields?

$$S' = \frac{1}{16\pi G} \int_{M} d^{D}x \sqrt{-g} \Big\{ \sum_{n=1}^{k} \partial_{n} f(\phi_{1}, ..., \phi_{k}) \mathcal{L}_{n} - V(\phi_{1}, ..., \phi_{k}) \Big\},$$
(50)

where $V(\phi_1, ..., \phi_k) = \sum_{n=1}^k \partial_n f(\phi_1, ..., \phi_k) \phi_n - f(\phi_1, ..., \phi_k)$. The variation of the action with respect to the scalar fields yields

$$\sum_{n=1}^{k} \partial_n \partial_m f(\phi) (\mathcal{L}_n - \phi_n) = 0, \quad m = 1, ..., k$$
(51)

If the only solution to these equations is $\phi_n = \mathcal{L}_n$, we recover the f(Lovelock) action and the theories are equivalent.

Pablo Antonio Cano Molina-Niñirola

Bonus

If det $(\partial_n \partial_m f) \neq 0$, then the only solution is $\phi_n = \mathcal{L}_n$. Moreover, we can perform the Legendre transform of f:

$$\varphi_n = \partial_n f(\phi_1, ..., \phi_k), \quad n = 1, ..., k,$$
(52)

$$\tilde{V}(\varphi_1,...,\varphi_k) = \sum_{n=1}^{\kappa} \varphi_n \phi_n - f(\phi_1,...,\phi_k) = V(\phi(\varphi)).$$
(53)

Then, in terms of the fields φ_n , it is clear that the action (50) takes the form

$$S' = \frac{1}{16\pi G} \int_{M} d^{D} x \sqrt{-g} \Big\{ \sum_{p=1}^{k} \varphi_{p} \mathcal{L}_{p} - \tilde{V}(\varphi_{1}, ..., \varphi_{k}) \Big\}.$$
 (54)

This theory is equivalent to f(Lovelock).

<ロ> (日) (日) (日) (日) (日)

Bonus

If det $(\partial_n \partial_m f) = 0$, the solution is not unique and there are k - r non-physical degrees of freedom, where $r = \operatorname{rank}(\partial_n \partial_m f)$. Therefore, we should keep only r scalars. If we define

$$\varphi_n = \partial_n f(\phi_1, \dots, \phi_k), \quad n = 1, \dots, k.$$
(55)

Then, there is a subset $I \subset \{1, ..., k\}$ of r indices such that $\{\varphi_i\}_{i \in I}$ are independent variables. The rest of fields depend on the formers: $\varphi_j = g_j(\varphi_i)$, $j \in J = \{1, ..., k\} - I$. We take as independent variables (φ_i, ϕ_j) , and we can define the semi-Legendre transform of f:

$$\tilde{V}(\varphi_i) = \sum_{i \in I} \varphi_i \phi_i + \sum_{j \in J} g_j(\varphi_i) \phi_j - f(\phi_1, ..., \phi_k).$$
(56)

It can be shown that it only depends on φ_i . Then, f(Lovelock) is equivalent to a scalar-tensor theory with r scalars:

$$S' = \int_{M} d^{D}x \sqrt{-g} \Big\{ \sum_{i \in I} \varphi_{i} \mathcal{L}_{i} + \sum_{j \in J} g_{j}(\varphi_{i}) \mathcal{L}_{j} - \tilde{V}(\varphi_{i_{1}}, ..., \varphi_{i_{r}}) \Big\}.$$
(57)

イロト 不得下 イヨト イヨト 二日