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Introduction

Higher order gravities:

The EH action should be modified by quantum corrections. String Theory
predicts an infinite series of higher order curvature terms.

Cosmology. Inflation and accelerated expansion.

Holography. The addition of higher curvature terms in the action allows us to
extract information about general CFTs (e.g., a free scalar).Bueno, Myers,

Witczak-Krempa; Brigante; Kats; de Boer

Well-known higher order theories:

1 f (R). Useful in cosmology models. Equivalent to a scalar-tensor theory.
e.g., Sotiriou, Faraoni

2 Lovelock gravity. Most general theory with second order equations.
Lanczos; Lovelock

f(Lovelock) gravity is a natural generalization of f (R) and Lovelock theories

Pablo Antonio Cano Molina-Niñirola f (Lovelock) theories of gravity Madrid, October 30, 2015 4 / 32



Variational problem in f (Lovelock)

1 Introduction

2 Variational problem in f (Lovelock)

3 Equivalence with scalar-tensor theory
Non-degenerate case
Degenerate case
Conformal transformation

4 Linearized equations
Massive gravitons in general L(Rµναβ) theories

5 Black holes
BPS solution
Homogeneous function
One ED

6 Conclusions
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Variational problem in f (Lovelock)

The f (Lovelock) action is given by

S =
1

16πG

∫
M

dDx
√
−gf (L1,L2, ...,LbD/2c), (1)

where Ln are the Euler densities (ED)

Ln =
1

2n
δµ1...µ2p
ν1...ν2n

Rν1ν2
µ1µ2

...Rν2n−1ν2n
µ2n−1µ2n

. (2)

Ln = 0 if D < 2n and
√
−gLn is topological if D = 2n. The previous action (1)

reduces to Lovelock-Lanczos and f (R) theories when we choose f to be a linear
combination of the ED or an arbitrary function of R = L1:

fLL =

bD/2c∑
n=0

λnL
2n−2Ln, fR = f (R), (3)

where L is a length scale and λn are dimensionless couplings.
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Variational problem in f (Lovelock)

The variation of the action is

δS =
1

16πG

∫
M

dDx
√
−gEµνδgµν +

1

16πG

∫
∂M

dD−1x
√
|h|
bD/2c∑
n=1

∂nf δv
µ
n nµ, (4)

where nµ is the normal vector to the boundary and hµν is the induced metric on
∂M. Also, we have

Eµν =

bD/2c∑
n=1

[
E (n)
µν +

1

2
gµνLn − 2P

(n)
λµαν∇

α∇λ
]
∂nf −

1

2
gµν f , (5)

δvµn = 2gβσP
(n)µν
αβ ∇αδgνσ. (6)

The field equations are
Eµν = 0. (7)

Fourth order equations

Variational problem not well-defined: we need to set ∂αδgµν
∣∣
∂M

= 0
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Variational problem in f (Lovelock)

Boundary contribution

S =
1

16πG

∫
M

dDx
√
−gL− 1

16πG

∫
∂M

dD−1x
√
|h|B. (8)

L Boundary term B B. conditions

GR R −2K Gibbons, Hawking; York δhµν = 0
f(R) f (R) −2f ′(R)K Madsen, Barrow δhµν = 0, δR = 0

Lovelock Ln Qn Verwimp δhµν = 0
f(Lovelock) f (L1, ...,LbD/2c) ??? ???

Qn ≡ −2n

∫ 1

0
dtδ

µ1...µ2n−1
ν1...ν2n−1

Kν1
µ1

(1

2
Rν2ν3
µ2µ3

− t2Kν2
µ2

Kν3
µ3

)
...
(1

2
R
ν2n−2ν2n−1
µ2n−2µ2n−1

− t2K
ν2n−2
µ2n−2

K
ν2n−1
µ2n−1

)
,

Kµν extrinsic curvature of ∂M. In f (Lovelock) we propose the following boundary
term

Bf (Lovelock) =

bD/2c∑
n=1

∂nf (L)Qn. (9)
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Variational problem in f (Lovelock)

The full f(Lovelock) action is then

Sf =
1

16πG

∫
M

dDx
√
−gf (L1, ...,LbD/2c)−

1

16πG

∫
∂M

dD−1x
√
|h|
bD/2c∑
n=1

∂nf (L)Qn,

(10)
and the variation when δhµν = 0 is

(16πG)δSf

∣∣∣
δhµν=0

=

∫
M

dDx
√
−gEµνδgµν −

∫
∂M

dD−1x
√
|h|
bD/2c∑
n,m=1

∂m∂nf δLmQn. (11)

In order to extremize the action we must fix also the partial derivatives of f on
the boundary:

δ
(
∂nf (L)

)∣∣∣
∂M

= 0, n = 1, ..., bD/2c. (12)

The number of independent conditions is equal to r = rank(∂n∂mf ). Since we
have to fix the induced metric hµν and the derivatives ∂nf , we conclude that the
number of physical degrees of freedom in f (Lovelock) theory is

ndof =
D(D − 3)

2
+ r . (13)

With respect to GR there are r extra degrees of freedom.
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Equivalence with scalar-tensor theory
Non-degenerate case

Let us consider again the f (Lovelock) action

S =
1

16πG

∫
M

dDx
√
−gf (L1,L2, ...,Lk), (14)

where k = bD/2c.We want to construct an equivalent scalar-tensor theory.

If det(∂n∂mf ) 6= 0, f (Lovelock) is equivalent to

S ′ =
1

16πG

∫
M

dDx
√
−g
{ k∑

p=1

ϕnLn − Ṽ (ϕ1, ..., ϕk)
}
. (15)

Ṽ is the Legendre transform of f (which exists because det(∂n∂mf ) 6= 0)

The equivalence can be checked by using the field equation for ϕn:
Ln = ∂nṼ (ϕ). It is the inverse Legendre transform.

This generalizes the case of f (R), which is equivalent to Barrow, Cotsakis

S ′fR =
1

16πG

∫
M

dDx
√
−g
{
ϕR − Ṽ (ϕ)

}
. (16)
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Equivalence with scalar-tensor theory
Degenerate case

In the case in which det(∂n∂mf ) = 0 we cannot construct the Legendre transform
of f , but it can be shown that f (Lovelock) is equivalent to

S ′ =

∫
M

dDx
√
−g
{∑

i∈I

ϕiLi +
∑
j∈J

gj(ϕi )Lj − Ṽ (ϕi1 , ..., ϕir )
}
. (17)

I is a subset of r indices and J the complementary set. Therefore there are r
scalars, where r = rank(∂n∂mf )

gj(ϕi ) are certain functions and Ṽ (ϕi1 , ..., ϕir ) is the semi-Legendre transform
of f

In conclusion, f(Lovelock) gravity is equivalent to a scalar-tensor theory
with a number of scalars equal to the rank of the Hessian matrix of f.

Note that the number of scalars coincide with the number of extra degrees of
freedom in f (Lovelock)
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Equivalence with scalar-tensor theory
Degenerate case

As an example, let us consider the theory

S =
1

16πG

∫
M

d4x
√
−g
{
− 2Λ0 + R + αL2R2 + βL4RL2 + γL6L2

2

}
, (18)

If 4αγ 6= β2 then r = rank(∂n∂mf ) = 2, and the equivalent scalar-tensor theory is

S ′ =
1

16πG

∫
M

d4x
√
−g
{
−2Λ0+ϕ1R+ϕ2L2−2

γL4(ϕ1 − 1)2 − βL2(ϕ1 − 1)ϕ2 + αϕ2
2

L6(4αγ − β2)

}
.

(19)

On the contrary, if 4αγ = β2, then r = 1 and there is an equivalent scalar-tensor
theory with only one scalar:

S ′ =
1

16πG

∫
M

d4x
√
−g
{
− 2Λ0 + ϕR + ϕ

β

2α
L2L2 −

(ϕ− 1)2

4αL2

}
. (20)
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Equivalence with scalar-tensor theory
Conformal transformation

It is well-known that f (R) theories are equivalent, through a conformal
transformation g̃µν = Ω2gµν , to GR plus a minimally coupled scalar:

S̃ ′fR =
1

1πG

∫
M

dDx
√
−g̃
{
R̃ − 1

2

(
∇̃φ
)2 − U(φ)

}
. (21)

Conformal transformation in f (Lovelock)?

Consider, for example, f (R,L2) in D = 4.
If f is non-degenerate, we have seen that the theory is equivalent to a
scalar-tensor theory with two non-dynamical scalars
If we perform a conformal transformation, the resulting theory is

S̃ ′fLL =
1

1πG

∫
M

d4x
√
−g̃
{
R̃ + ϕL̃2 + 8∇̃µϕ∇̃νφG̃µν − 6

(
∇̃φ
)2

− 8∇̃µϕ∇̃µφ2̃φ− 42̃ϕ
(
∇̃φ
)2

+ 8∇̃µϕ∇̃µφ
(
∇̃φ
)2 − U(φ, ϕ)

}
(22)

Second order equations
Hordenski-like theory, with two scalars and a coupling to L2
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Linearized equations

Let us parametrize the f (Lovelock) theory in the following way

Sf =
1

16πG

∫
M

dDx
√
−g
{
− 2Λ0 + R + λf (L1, ...,Lk)

}
, (23)

so we make explicit the Einstein-Hilbert term and the cosmological constant.
Then, we assume that our background is maximally symmetric, with metric ḡµν .
The Riemann tensor of such space is given by

R̄µναβ = Λδµναβ , (24)

where Λ is a constant. If we plug this Riemann tensor in the field equations, we
find the constraint equation for Λ:

2Λ0 = (D − 1)(D − 2)Λ
(

1− 2

D − 2
λ∂1f

(
L̄
) )

− (D − 1)(D − 2)λ
k∑

n=2

∂nf
(
L̄
)

2n
(D − 3)!

(D − 2n)!
Λn + λf

(
L̄
)
.

(25)

where the bar means that we evaluate at the background. This equation gives us
the possible vacua of the theory.
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Linearized equations

We perturbe the metric on this background: gµν = ḡµν + hµν . The linearized
equations for the metric perturbation read

α
(
∇̄(µ|∇̄σhσ|ν) −

1

2
∇̄ν∇̄µh −

1

2
2̄hµν + Λhµν − Λhḡµν

)
+

+
[
ḡµν
(
Λβ − α

2

)
+

β

D − 1

(
ḡµν2̄− ∇̄µ∇̄ν

)](
∇̄α∇̄βhαβ − 2̄h − Λ(D − 1)h

)
= 0.

(26)
where α and β are the following constants

α = 1 + λ

k∑
n=1

n∂pf
(
L̄
) (D − 3)!

(D − n − 1)!
Λn−1, (27)

β = λ

k∑
n,m=1

nm∂n∂mf
(
L̄
) (D − 2)!(D − 1)!

(D − 2n)!(D − 2m)!
Λn+m−2. (28)

As an important observation, there is no term 2̄2hµν , which is related to the
presence of massive gravitons.
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Linearized equations

Finally, we can choose the transverse gauge, ∇̄µhµν = ∇̄νh, and we can identify
the physical fields. We have a traceless, massless spin-2 field, tµν , which satisfies
the equation

−α
2

(
2̄tµν − 2Λtµν

)
= 0, (29)

and a scalar mode, h = hµµ, which satisfies

−Λ(D − 1)
[(
DΛβ − α(D/2− 1)

)
h + β2̄h

]
= 0. (30)

The metric perturbation hµν can be reconstructed by means of the relation

tµν = ĥµν −
2

D − 2

β

α

(
∇̄µ∇̄νh −

ḡµν
D

2̄h
)
, (31)

where ĥµν is the traceless part of hµν :

ĥµν = hµν −
1

D
ḡµνh. (32)
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Linearized equations

We have found that in f (Lovelock) gravity there are no massive gravitons. This is
a nice property, because massive gravitons usually behave as ghosts. Are there
more theories free of massive gravitons?

GR (second order equations)

Lovelock (second order equations)

f (R)

f (Lovelock)

Quasitopological gravity (cubic curvature theory) Myers, Robinson

. . .

However, most of higher order gravities contain massive gravitons. For example,
RµνR

µν or RµναβR
µναβ .

Which conditions must a theory satisfy so it is free of massive gravitons?
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Linearized equations
Massive gravitons in general L(Rµναβ) theories

We want to determine the presence of massive gravitons in a theory of the form

S =

∫
M

dDx
√
−gL, (33)

where L is a scalar function of the Riemann tensor Rµνσρ and the (inverse) metric
gµν . The presence of massive gravitons is related to the term 2̄2hµν in the
linearized equations.
The result of our analysis is the following: We define

Cσρληµαβν =
∂

∂Rσρλη

∂L

∂Rµαβν

∣∣∣∣
ḡab

. (34)

On a MSB, the most general form of this tensor is

Cσρληµαβν = aBσρληµαβν+b (ḡµβ ḡαν − ḡµν ḡαβ)
(
ḡσλḡρη − ḡση ḡρλ

)
+cgabg

cdBσρληcidj Baibj
µαβν ,
(35)

where Bσρληµαβν ≡ δ
[σ
µ δ

ρ]
α δ

[λ
β δ

η]
ν + δ

[λ
µ δ

η]
α δ

[σ
β δ

ρ]
ν .
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Linearized equations
Massive gravitons in general L(Rµναβ) theories

The parameters a, b and c depend on the Lagrangian L. We found that the
condition for not having massive gravitons is

a + 2c = 0. (36)

At the end, this is a constraint equation on the parameters of the theory. For
example, there are a lot of cubic gravities, most of them not studied yet, which
satisfy this condition.

Corollary

If the Lagrangians L1,...,Ln are free of massive gravitons ⇒ any theory with
Lagrangian f (L1, ..., Ln) is also free of them.
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Black holes
BPS solution

We consider the theory

S =
1

16πG

∫
M

dDx
√
−g
{

(D − 1)(D − 2)

L2
+ R + αL2L2 + βL2R2 + γL4RL2 + δL6L2

2

}
. (37)

When the parameters are given by

α =
λ

(D − 2)(D − 3)
, β =

1

4(D − 1)(D − 2)
,

γ =
λ

2(D − 1)(D − 2)2(D − 3)
, δ =

λ2

4(D − 1)(D − 2)3(D − 3)3
,

where λ is arbitrary, we find the following solution

ds2 = −
(

1 +
r2

L2
h(r)

)
dt2 +

1(
1 + r2

L2 h(r)
)dr2 + r2dΩ2

(D−2). (38)

where h(r) is the function

h(r) =
1

2λ

[
1−

√
1− 4λ

(2D − 4

D
+ c1

LD

rD
+ c2

LD−1

rD−1

)]
. (39)
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Black holes
BPS solution

When the constants satisfy

0 < λ ≤ D

8D − 16
, c1 ≤ 0, c2 ≤ −c1

[1− λ(8D − 16)/D

−4λc1

]1/D

D(D − 1)1/D−1 (40)

the solution exists ∀r > 0, it is asymptotically AdS with radius

L̃2 = L2D
4D−8

(
1 +

√
1− λ 8D−16

D

)
, there is a curvature singularity at r = 0 and a horizon.

Therefore, the solution is an asymptotically AdS black hole. In the limit λ→ 0 we
get

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2dΩ(D−2), (41)

where

g(r) = 1 +
r2

L2

2D − 4

D
+ c1

LD−2

rD−2
+ c2

LD−3

rD−3
. (42)

This is a well-known solution of R2 gravity Ayon-Beato, Garbarz, Giribet, Hassaine . This
solution reduces to Reissner-Nordstrom-AdS in D = 4, and to Schwarzcshild-AdS
if c1 = 0.
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Black holes
Homogeneous function

In D = 4 the most general f (Lovelock) gravity is

S =
1

16πG

∫
M

d4x
√
−gf (R,L2). (43)

When f is homogeneous of degree 1, this is f (αR, αL2) = αf (R,L2), and if the
derivatives of f are not singular at R = 0, then this theory allows Ricci flat
solutions

Rµν = 0. (44)

We get solutions as Schwarzschild’s or Kerr’s.
In the case in which f is homogeneous of degree 1, another family of solutions can
be found by imposing ∂R f (R,L2) = 0. This gives us a equation of the form

αR + βL2L2 = 0. (45)
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Black holes
One ED

Let us consider the theory S =
∫
dDx
√
−gf (Ln). In some cases, a solution is

given by imposing Ln = ΛnD!/(D − 2n)! = const. A solution to this equation is
given by

ds2 = −
(
1− Λr2F (r)

)
dt2 +

dr2

1− Λr2F (r)
+ r2dΩ2

(D−2), (46)

where

F (r) =

[
1 +

1

Λn

( c1

rD−1
+

c2

rD

)]1/n

. (47)

In D = 4, n = 1, this is dS/AdS-RN black hole, solution of some R2 gravities.

If c2 = 0, the previous is solution of pure Lovelock gravity Ln + const

If c2 = 0 and the constant value of Ln is a solution of the equation
2nLnf

′(Ln)− Df (Ln) = 0, then the previous is a solution of f (Ln) theory.

Funny situation: Λ = c2 = 0, D = 3n + 1: Schwarzschild-like solution!

ds2 = −
(
1− r0/r

)
dt2 +

dr2

1− r0/r
+ r2dΩ2

(D−2), (48)
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Conclusions

We have computed the variation of f (Lovelock) action and we have proposed
a generalized boundary contribution which sets the variational problem
well-posed.

By counting the quantities that must be fixed on the boundary we found that,
with respect to GR, there are r = rank(∂n∂mf ) extra degrees of freedom.

We have shown that f (Lovelock) gravity is equivalent to a scalar-tensor
theory with r scalars.

We have computed the linearized equations and we have found that in
f (Lovelock) there is a massless, traceless spin-2 graviton and a scalar mode,
but there is no massive graviton.

We have developed a general procedure in order to determine the presence of
massive gravitons in any L(Rµναβ) theory.

We have found several exact solutions of certain f (Lovelock) theories, some
of them represent static and regular black holes.
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Conclusions

Thank you for your attention
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Bonus

Let us consider the f (Lovelock) action

S =
1

16πG

∫
M

dDx
√
−gf (L1,L2, ...,LbD/2c). (49)

Is this theory equivalent to this other one, with k = bD/2c scalar fields?

S ′ =
1

16πG

∫
M

dDx
√
−g
{ k∑

n=1

∂nf (φ1, ..., φk)Ln − V (φ1, ..., φk)
}
, (50)

where V (φ1, ..., φk) =
∑k

n=1 ∂nf (φ1, ..., φk)φn − f (φ1, ..., φk).
The variation of the action with respect to the scalar fields yields

k∑
n=1

∂n∂mf (φ)
(
Ln − φn

)
= 0, m = 1, ..., k (51)

If the only solution to these equations is φn = Ln, we recover the f (Lovelock)
action and the theories are equivalent.
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Bonus

If det(∂n∂mf ) 6= 0, then the only solution is φn = Ln. Moreover, we can perform
the Legendre transform of f :

ϕn = ∂nf (φ1, ..., φk), n = 1, ..., k, (52)

Ṽ (ϕ1, ..., ϕk) =
k∑

n=1

ϕnφn − f (φ1, ..., φk) = V (φ(ϕ)). (53)

Then, in terms of the fields ϕn, it is clear that the action (50) takes the form

S ′ =
1

16πG

∫
M

dDx
√
−g
{ k∑

p=1

ϕnLn − Ṽ (ϕ1, ..., ϕk)
}
. (54)

This theory is equivalent to f (Lovelock).
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Bonus

If det(∂n∂mf ) = 0, the solution is not unique and there are k − r non-physical
degrees of freedom, where r = rank(∂n∂mf ). Therefore, we should keep only r
scalars. If we define

ϕn = ∂nf (φ1, ..., φk), n = 1, ..., k . (55)

Then, there is a subset I ⊂ {1, ..., k} of r indices such that {ϕi}i∈I are
independent variables. The rest of fields depend on the formers: ϕj = gj(ϕi ),
j ∈ J = {1, ..., k} − I . We take as independent variables (ϕi , φj), and we can
define the semi-Legendre transform of f :

Ṽ (ϕi ) =
∑
i∈I

ϕiφi +
∑
j∈J

gj(ϕi )φj − f (φ1, ..., φk). (56)

It can be shown that it only depends on ϕi . Then, f (Lovelock) is equivalent to a
scalar-tensor theory with r scalars:

S ′ =

∫
M

dDx
√
−g
{∑

i∈I

ϕiLi +
∑
j∈J

gj(ϕi )Lj − Ṽ (ϕi1 , ..., ϕir )
}
. (57)
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