

Preliminary study on impedance and collective effects

M. Migliorati

Acknowledgements:

M. Benedikt, R. Calaga, R. Kersevan, N. Monet,

A. Mostacci, L. Palumbo, F. Zimmermann

Beam parameters

parameter	Symbol	Value
Circumference	L	100 km
Beam energy	E	45.5 GeV
Beam current	I ₀	1450 mA
Bunches/beam	N_b	16700
Bunch population	N_p	1.8 x10 ¹¹
Bunch length(*)	$\sigma_{\rm z}$	2.3 mm
Energy spread(*)	σ_{ϵ}	3.7x10 ⁻⁴
RF voltage	V_{RF}	2.5 GV
RF frequency	f_RF	400 MHz
Harmonic number	h	133600
Synchrotron tune	Q_s	0.46
Energy loss/turn	U_0	0.03 GeV
momentum compaction	α_{c}	18x10 ⁻⁵

^(*) without beamstrahlung (no collision)

Short range wakefield: Resistive wall

 To evaluate the RW impedance, we consider high conductivity such that the skin depth is much smaller than the wall thickness and

$$c\chi/b << \omega << c\chi^{-1/3}/b \qquad \chi^{1/3}b << z << b/\chi$$
with $\chi = \frac{1}{Z_0 \sigma_c b}$

$$10.6 << \omega << 5.7 \times 10^{12} \text{ rad/s}$$

$$Z_{\parallel}(\omega) = \left[1 - i\operatorname{sgn}(\omega)\right] \frac{L}{2\pi b} \sqrt{\frac{Z_0|\omega|}{2c\sigma_c}}$$

$$Z_{\perp}(\omega) = \left[\operatorname{sgn}(\omega) - i\right] \frac{L}{2\pi b^{3}} \sqrt{\frac{2cZ_{0}}{|\omega|\sigma_{c}}}$$

$$\chi^{1/3}b \ll z \ll b/\chi$$

$$52.5x10^{-6} < z < 2.8x10^7 \text{ m}$$

$$w_{\parallel}(z) = -\frac{Lc}{4\pi b} \sqrt{\frac{Z_0}{\pi \sigma_c}} \frac{1}{|z|^{3/2}}$$

$$w_{\perp}(z) = \frac{Lc}{\pi b^3} \sqrt{\frac{Z_0}{\pi \sigma_c}} \frac{1}{|z|^{1/2}}$$

Short range wakefield: Resistive wall

Vacuum pipe of aluminum

$$\sigma_c = 3.7 \times 10^7 \text{ S/m}$$
 L=10⁵ m

Short range wakefield: Resistive wall

Elliptic chamber

Form factors $G(u_0)$ as a function of

$$q = \frac{a - b}{a + b} \qquad q = e^{-2u_0}$$

$$Z_{\prime\prime}(\omega) = \left[1 - i\operatorname{sgn}(\omega)\right] \frac{L}{2\pi b} \sqrt{\frac{Z_0|\omega|}{2c\sigma_c}} G_{\prime\prime}(u_0)$$

$$Z_{\perp}(\omega) = \left[\operatorname{sgn}(\omega) - i\right] \frac{L}{2\pi b^{3}} \sqrt{\frac{2Z_{0}c}{|\omega|\sigma_{c}}} G_{\perp}(u_{0})$$

Short range transverse wakefield: Resistive wall

 Previous work (from N. Mounet): transverse wake due to RW

Short range transverse wakefield: Resistive wall

With a bigger vacuum chamber the wake is reduced

Short range longitudinal wakefield: Resistive wall

 The wake potential of a Gaussian bunch with 2.3 mm bunch length can be obtained by

$$W_{\parallel}(z) = \frac{cL}{8\sqrt{2}\pi b\sigma_z^{3/2}} \sqrt{\frac{Z_0}{\sigma_c}} F(z/\sigma_z) G_{\parallel}(u_0)$$

with

$$F(x) = |x|^{3/2} e^{-\frac{x^2}{4}} (I_{1/4} - I_{-3/4} \pm I_{-1/4} \mp I_{3/4})$$

and I_n the modified Bessel function

fit with R-L impedance model

$$W(z) = -Rc\lambda(z) - Lc^2\lambda'(z)$$

R=7.5 k Ω and L=148 nH.

The loss factor is 276 V/pC

Short range wakefield: RF cavities

Previous work: Courtey of N. Mounet

Short range wakefield: RF cavities

- 400 MHz cavities have been considered
- Both CST Microwave Studio and ABCI have been used to compare wakefields for a single cell

• Wake potential for long bunches and fit with R-L impedance analytical model: $W(z) = -Rc\lambda(z) - Lc^2\lambda'(z)$

10 cm bunch length

1 cm bunch length

• At σ_z =2.3 mm we use ABCI results

We are losing the proportionality of the wake potential with the inverse of the bunch length

The loss factor for one cell is K_{loss}=1.043 V/pC

Neither the R-L or a BBR impedance model can fit the wake potential

 A good fit can be obtained by using a combination of BBR and R-L impedance model ...

The loss factor can be evaluated by

$$k_{l} = \frac{Rc}{2\sqrt{\pi}\sigma_{z}} + \frac{R_{s}}{2Q'} \operatorname{Re}\left[\omega_{1}w(\omega_{1}\sigma_{z}/c)\right]$$

with

BBR contribution

$$\omega_1 = \frac{\omega_r}{Q} \left(-\frac{i}{2} + Q' \right) \qquad Q'^2 = Q^2 - 1/4$$

and w the complex error function

[Handobook of Accelerator Physics and Engineering, A. Chao, E. Tigne, p. 210]

The fit gives: K_{loss}=1.07 V/pC

		Per ring				
Rf Region	Frequency	Tubes	Modules	Modules	Voltage	Length
	(MHz)	1 MW ea	per tube	2 couplers ea	(MV)	(m)
1	400	13	8	104	1248	260
2	400	13	8	104	1248	260
3a	400	6	8	48	576	120
3b	400	6	8	48	576	120
4a	400	6	8	48	576	120
4b	400	6	8	48	576	120
Total		50		400	4800	1000
Total for sl	nared_rf	100		800	9600	2000

Courtesy of U. Wienands, SLAC Aspen Physics Center 31-Jan-2015

Pag. 14

- By considering 2 two-cell cavities per module, we get a maximum of 1600 cells, obtaining a total of 44.8 $k\Omega$
- For CEPC* ring R=28.1 $k\Omega$ (N. Wang, et al., 55th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders Higgs Factory 2014)

^{*} Circular Electron Positron Collider

 However, if we take the short range wake of the two cell cavity, then R≅33 Ω, the loss factor is 1.25 V/pC, and the total impedance becomes 26.4 k Ω (800 cavities)

Longitudinal Impedance Budget

Element	R [kΩ]	L [nH]	k _{loss} [V/pC]	Z/n (mΩ)
Resistive wall (AI)	7.5	148	276	2.8
RF cavities	26.4	-	1000	-
total	33.9	148	1276	2.8
CEPC total	37.8	128.8	1205.1	4.4

- The total loss factor, with a bunch charge of about 29 nC gives an energy lost per turn of about 0.037 GeV.
- The RF cavities contribute mainly to the real part of the impedance and to the total loss factor.
- The impedance budget is comparable to CEPC.

Single bunch longitudinal effects

 Bunch lenghening is obtained in the potential well distortion regime by numerically solving the Haissinski equation with the R-L impedance model due to RF cavities and RW.

Initial bunch length: 2.30 mm Final bunch length: 2.56 mm

Bunch is lengthened by about 10%

Single bunch longitudinal effects

 Microwave instability threshold is estimated according to the Boussard or Keil-Schnell criterion

$$\left| \frac{Z_{\parallel}}{n} \right| = \frac{\left(2\pi\right)^{3/2} \alpha_c E \sigma_{\varepsilon}^2 \sigma_z}{ceN_p} \cong 5 \text{ m}\Omega$$

- This is a very small value ... further investigation is necessary
- CEPC longitudinal impedance threshold is |Z/n|=25 mΩ
 (N. Wang, et al., 55th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders – Higgs Factory 2014)

Single bunch longitudinal effects

 Alternative crab-waist scenario using the 175 GeV optics at the Z pole (45 GeV)

parameter	Symbol	Value
Bunch population	N_p	1.0 x10 ¹¹
Bunch length	$\sigma_{\rm z}$	2.7 mm
Energy spread	σ_{ϵ}	1.16x10 ⁻³
momentum compaction	${\sf a_c}$	0.5x10 ⁻⁵

$$\left| \frac{Z_{\parallel}}{n} \right| = \frac{(2\pi)^{3/2} \alpha_c E \sigma_{\varepsilon}^2 \sigma_z}{ceN_p} \cong 2.7 \text{ m}\Omega$$
 With only the RW impedance the machine is already above microwave instability threshold.

microwave instability threshold!

Coupled bunch instability - longitudinal

- High quality resonant modes trapped, for example, in the RF cavities can induce coupled bunch instabilities.
- The cut-off frequency of the TM01 mode for a circular pipe with radius of 10 cm (corresponding to the tubes attached to the RF

cavities) is about 1.15 GHz.

- Below 1.1 GHz we can see, in addition to the fundamental mode at 400 MHz, other trapped HOMs.
- Considering the whole RF system, due to construction tolerances there is a spread in the resonant frequencies of HOMs wich reduces the maximum shunt resistance.

Coupled bunch instability - longitudinal

• In the worst case of resonant condition, by supposing the bunch as a point charge (no form factor), the grow rate of the instability is $\alpha I_0 fR$

 $\alpha = \frac{\alpha_c I_0 f R_s}{2(E/e)Q_s}$

 Without any feedback, this grow rate can only be compensated by the natural damping rate (1320 turns) so that the maximum shunt resistance of a HOM is given by

$$R_s = \frac{2(E/e)Q_s}{\alpha_c I_0 f \tau_z} \cong \frac{365}{f[\text{GHz}]} \text{ k}\Omega$$

longitudinal maximum shunt impedance

