Dark Matter Mono-Lepton Channels Simplified model in Madgraph

Kerstin Hoepfner, Viktor Kutzner, Klaas Padeken RWTH Aachen University, III. Phys. Inst. A

ATLAS/CMS Dark Matter Forum February 16th 2015

Mono-lepton Channels

Channels used: $W \rightarrow ev + MET$ $W \rightarrow \mu v + MET$ Signature: high p_{τ} lepton + MET (dominated by $\chi \chi$)

V8 TeV: used EFT. Madgraph. Vector (V) and axial-vector (AV) couplings Emphasis on **interference**, limits for $\xi = \pm 1$, 0 arXiv:1208.4361v2

v13 and v14 TeV: simplified model (DMV) implemented in Madgraph

Ref: "Missing Energy Signatures of Dark Matter at the LHC" Patrick J. Fox, Roni Harnik, Joachim Kopp, Yuhsin Tsai (2011). arXiv:1109.4398

Mono-Lepton (EFT)

Mono-lepton channel sensitive to possibly different coupling to u- and d-type quarks

Because of ξ always three results for each coupling

A (GeV)

For ξ = -1 maximum cross section. Sensitivity comparable to monojet. To reduce no. of parameters, concentrate on ξ = -1 in the following, although ξ = +1 has very different signal shape & sensitivity.

pp cross-section and lambda limits nearly independent on coupling (vector vs axial-vector) due to similar cross section.

Turning to Simplified Models

Switch to MG simplified model because it does include interference

(DMV) arXiv:1109.4398

Madgraph-version 2.1.2.

Model version 1.0 from P. Fox, J. Kopp et al.

Mediator = Z'

Four parameters in Madgraph:

- DM mass M_{χ}
- Mediator mass M_{Med}
- Mediator width $\Gamma_{\rm med}$
- Couplings = $\sqrt{g_{SM} g_{DM}}$

DMV implemented in MG as V-A.

We modified it to either pure V or A. From EFT interpretation we know V≈A cross sections very similar. Concentrate on axial-vector coupling where LHC competitive to direct detection for (not for V).

Up to now always used $g_{DM} = g_{SM} = 1$

Discuss width later

Feynman Graphs (Madgraph)

Feynman graph examples for process $pp \to W\chi\chi(j), W \to Iv_I$:

Same model could be used for hadronic W-channels

Comparison unmodified V-A and modified axial-vector coupling

 \rightarrow Nearly no difference

Similarities in xsec for V and AV xsec and M_T shape (as seen in EFT) still holds. Allows to reduce number of samples to be generated.

cross section values:

$m_{med} \; (GeV)$	ξ	$\sigma \times BR \text{ (pb)}, \text{ V-A}$	$\sigma \times BR$ (pb), axial vector	$\sigma \times BR$ (pb), vector only
50	-1	524.5	503.9 ± 0.2934	503.9 \pm 0.2934
500	-1	-	$5.306\ \pm\ 0.00349$	$5.306\ \pm\ 0.00349$
2000	-1	0.08155	$0.08153 \pm 4.974e-05$	$0.08153 \pm 4.974e-05$
50	+1	29.60	28.92 ± 0.01883	28.92 ± 0.01883
500	+1	-	0.4943 ± 0.0003043	0.4943 ± 0.0003043
2000	+1	0.005660	$0.005661 \pm 3.083e-06$	0.005661 ± 3.083 e-06

Same xs as well as m_T spectrum for supposedly pure vector and axial vector coupling after changes to the DMV model!

Selected parameters for MG5 sample generation

 ξ = -1 with max xsec, ξ = +1 with very different MT shape,

- $\xi = -1, +1$ hence impact on sensitivity. $\xi = 0$ can be scaled from -1.
- m_{DM} = 1 GeV, 10 GeV, 250 GeV
- $g_{DM} = g_{SM} = 1$ Keep SM and DM couplings at 1 for now.
- upper limit on $\frac{\Gamma}{m_{\text{med}}} = \frac{1}{3}$
- AV coupling implemented in DMV model
- m_{med} = 0.05, 0.5, 2 TeV (selected from shape analysis parameter plots)

⁶ Γ = $M/8\pi$ corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings $g_{\chi}g_q = 1$. Since in figure 7 we have assumed couplings to all quark helicities and flavors (collider production is dominated by coupling to up-quarks though), and since $g_{\chi}g_q > 1$ in parts of the plot (see dashed contours), $\Gamma = M/8\pi$ can be regarded as an approximate lower limit on the mediator width.

(rationale for lower limit, arxiv:1109.4398v2)

Mediator width has impact on sensitivity. But little impact on M_T spectrum, no need to vary kinematic selections.

Width can be set in MG. Starting point: varied width between Γ =M_{med}/3 and Γ =M_{med}/8 π

Alternatively, calculate width from axial couplings formulas:

$$\begin{split} \Gamma(Z' \to \bar{\chi}\chi)_{\text{vector}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 + \frac{2m_{\text{DM}}^2}{M_{\text{med}}^2} \right) \sqrt{1 - \frac{4m_{\text{DM}}^2}{M_{\text{med}}^2}} \\ \Gamma(Z' \to \bar{q}q)_{\text{vector}} &= \frac{3g_q^2 M_{\text{med}}}{12\pi} \left(1 + \frac{2m_q^2}{M_{\text{med}}^2} \right) \sqrt{1 - \frac{4m_q^2}{M_{\text{med}}^2}} \\ \Gamma(Z' \to \bar{\chi}\chi)_{\text{axial}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - \frac{4m_{\text{DM}}^2}{M_{\text{med}}^2} \right)^{3/2} \\ \Gamma(Z' \to \bar{q}q)_{\text{axial}} &= \frac{3g_q^2 M_{\text{med}}}{12\pi} \left(1 - \frac{4m_q^2}{M_{\text{med}}^2} \right)^{3/2} \end{split}$$

For high M_{med} corresponds rather to $\Gamma \approx M/12\pi$. Resonance becomes very narrow and sensitivity increases.

 $\log_{10}(\sigma_{\text{EFT}}/\sigma_{\text{FT}}), \ \sqrt{\text{s}}\text{=}13 \ \text{TeV}, \ \xi\text{=-}1, \ \text{AV}$

Implications of Simplified Model on M_T Spectrum

Studied impact of model parameters on transverse mass M_{τ} spectrum for 13 TeV. Address question if kinematic selections (pT/MET, $\Delta \phi$) have to be re-optimized?

CMS Simulation

Conclusions:

- Mediator width has little impact on M_{τ} shape
- Mediator mass slightly changes M_{T} spectrum ۲
- M_{τ} shape dependence on ξ as seen in EFT ۲

Implications of Simplified Model on M_T Spectrum

Studied impact of model parameters on transverse mass M_T spectrum for 13 TeV. Adress question if kinematic selections (pT/MET, $\Delta \phi$) have to be re-optimized?

CMS Simulation

Conclusions:

- Mediator width has little impact on M_T shape
- Mediator mass slightly changes M_T spectrum
- M_T shape dependence on ξ as seen in EFT

Mediator mass scan for vs = 8, 13 TeV Varied width between $\Gamma = M_{med}/3$ and $\Gamma = M_{med}/8\pi$

 Λ mediator mass scan

Plans and some Questions

- Next round of data analysis in terms of EFT and DMV simplified model (MG
- implementation). Use MG as baseline to study interference?
- Info of this model on twiki?
- Vary the width or use only very narrow one?
- Take m_{DM} and M_{med} mass points from ATLAS/CMS recommendation.
- Need to simulate only ξ = -1 and ξ = +1 where M_T shape is different. ξ = 0 can be scaled.
- Also vary coupling strength (so far used $g_{SM} = g_{DM} = 1$).
- Proposed values: g_{SM} and g_{DM} = 0.3, 0.5, 1.0 and 1.45

Test other models with mono-lepton final state discussed in this forum