PACMAN : technical objectives

Hélène Mainaud Durand

Subject 1.1

Non-contact high precision sensor for Leitz Infinity Coordinate Measuring Machine

Characterization of the stretched wire

F	Requirements		Feb. 15	Requ	uiremen	ts	Marc	h 15	Characte	erization	Nov. 15
	Compa hea	tibility ad wit	/ of the n th magne	neasure etic field	ement ds		Me	thod the	& means e stretche	to meas d wire	sure
	Ir	npact	shown		ok			F	Requirem	ents	
	Characte	rizati	on on ac	curacy	July 16			St	udy of se	nsors	Oct. 15
									Qualificat	ion	Nov. 15
		Feb. 16									
			Qualifica	tion on	the Leit	z Cl	MM	at CE	ERN.	June 16	
		Mea	suremen	ts on th		MAN	l vali	datic	on bench	July 16	

Subject 1.2

Development and validation of an absolute Frequency Scanning Interferometry FSI network

Subject 1.3

Micro-triangulation for high accuracy short range measurements of dynamic objects

Upgrade of the syste	em	\circ	+	Adaptation to the PACMAN project	
Control several instruments	Apr 15		o- <	Test new FSI targets	Jul 15
Enhance Auto-Focus	Mai 15		6	Detect the stretched wire	Sept 15
Automatize exposure time	Jun 15			Simulate configuration	Nov 15
Inter-compariso	on with	FSI	Jan 16		
Measurements on the	PACN	IAN bench	Aug 16		

Extrapolation to a portable solution Dec 16

Improve GUI Improve connectivity Test Leica TS50

Subject 2.1

Stretched wire systems for the magnetic measurements of small aperture magnets

Improvement/refinement of the wire based methods Comparison between classic & oscillating stretched wire methods Analysis of uncertainties

May 15

Adaptation to the **PACMAN** project

Requirements for PACMAN

Determination of the position of the wire Design of a bench for PACMAN

Inter-comparison with PCB rotating coil bench

Measurements on the PACMAN validation bench

PCB technology for small diameter field probes

March 15 Status of current bench Study of sensing coils

Hardware & software improvements for a mini PCB rotating coil bench

Determination of metrological improvements Development of a PCB rotating coil

Inter-comparison with the stretched wire method

Subject 3.1

Ultra precise quadrupoles magnet assembly and testing. Integration of an alignment test-bed towards an industrial production

Assembly of ultra precise quadrupoles		Integration of an	alignment test-bed
State of the art Uncertainties estimation	April 15	Interfaces study	Integration of the technical systems
Development of a new Methodology, study			Design of the PACMAN validation bench
of prototypes, final validation			Assembly & qualification

Extrapolation to an industrial production

Subject 3.2

Seismic sensor development & vibration characterization

CLIC BDS	requirements
----------	--------------

Definition of the requirements Investigation of different technologies

State of the art Definition of procedure of tests & qualification Comparison with sensors developed at LAPP

April 15

Choice of a sensor for PACMAN

July 15

Improve/build prototype to answer CLIC BDS requirements

Subject 3.3

Nano-positioning of the main linac quadrupole as means of laboratory pre-alignment

	State of the art			PACMAN nano-positioning system
	Development of a long rate actuator	nge		Implementation & gualification
	Requirements definition	Feb. 1	5	of solutions developed for type 1
S	tudy & design of solutions	Dec. 1	5	Adaptation to the type 1 setup of the PACMAN bench Dec. 15
> e	rformance characterization	June 1	6	
E	Extrapolation to 4/5 DOF (study)	Oct. 10	6	

Measurements on the PACMAN validation bench

Subject 4.1

Alignment & resolution of a BPM operating at microwave frequencies in the nanometre regime

Measurements on the PACMAN validation bench

Subject 4.2

EM field alignment of the CLIC accelerating structure with help of WFM signals

Measurement of the internal geometry of AS using wakefields

State of the art

Evaluation of 2 methods

Qualification on a bench

Evaluation of solutions for the cell to cell alignment

installed in CTF3

Project schedule

Project schedule

PACMAN validation bench

		20	13		2014													2015										2016											2017										
	s	0	Ν	D	J	FN	A A	V N	r v	J	Α	S	0	Ν	D	J	F	м	Α	м	J	J	Α	s	0	Ν	D	J	F	м	Α	м	J	J	Α	s	0	Ν	D	J	F	м	Α	м	Α	м	J	J	Α
Months	1	2	3	4	5	6 7	7 8	3 9	9 10	0 11	l 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	44	45	46	47	48
		Familiarization Va										ali	lidation										Integration								Analysis									and extrapolation									
		Start of the project																																															
			_			-	-		-1-											St	ret	ch	ed	W	/ire	ire chosen																							
																													1	T																			
																												All	te	ch	nic	al	sy	st	em	ıs i	nte	egr	at	ed									
																																			_														
																																All technic							ca	al systems qualified									
																																					1			1	1	1	1	Ł					
																Measure										rei	me	nt	s 1	st g	ste	р																	
																																									1	1	1	1	1		1	1	Ľ.
																																							M	ea	sui	rer	ne	nts	52	nd s	ste	р	

