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What are Bayesian Methods?

Bayesian inference is a process of learning from data*

Bayesian statistical methods start with existing
'prior’ beliefs, and update these using data to give
'vosterior’ beliefs, which may be used as the basis
for inferential decisions?

thttp://www.sagepub.com/upm-data/18550 Chapter6.pdf
’http://www.scholarpedia.org/article/Bayesian_statistics



Bayes Theorem
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As used in Bayesian Statistics:
The posterior is
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the likelihood
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probability of observing output y given a model 1 that
depends on observable inputs x and parameters 0




Bayesians vs Frequentists™

Where appreciable prior information exists, perhaps the most significant
difference between Bayesian and frequentist methods is the ability of
the Bayesian analysis to make use of that additional info [the prior dist]

As a result, Bayesian methods will typically produce stronger inferences
from the same data

Furthermore, the prior information allows the Bayesian analysis to be
more responsive to the context of the data

However, the prior distribution is also the focus of opposition to
Bayesian methods from adherents of the frequentist philosophy

Frequentists regard its use as unscientific, so do not believe that such
stronger or more responsive inferences can be obtained legitimately
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*http://www.sagepub.com/upm-data/18550 Chapter6.pdf



Bayesians vs Frequentists™

Two old-timers slugging out the Bayes vs Frequentist battle;

If [Bayesians] would only do as [Bayes] did and publish
posthumously we should all be saved a lot of trouble

Maurice Kendall (1907—-1983), JRSSA 1968

The only good statistics is Bayesian Statistics

Dennis Lindley (1923—2013)
in ‘The Future of Statistics: A Bayesian 21st Century’ (1975)

*http://faculty.washington.edu/kenrice/BayesintroClassEpi515.pdf



Bayesians vs Frequentists

A Bayesian is
One who, vaguely expecting a horse and

catching a glimpse of a donkey, strongly
concludes he has seen a mule*

*Stephen Senn, Statistical Issues in Drug Development, 2" Ed., Wiley & Sons Ltd., © 2007 7



Why now?

* Roots of Bayesian methods ~1700's
e Growth in late 1980's / 1990's

Bayes Laplace

In their highly influential JASA 1990 paper, Alan Gelfand
and Adrian Smith projected the Bayesian paradigm towards
the stars when they recommended Markov Chain Monte
Carlo (MCMC) simulations as a way of computing Bayesian
estimates and inferences for the parameters in a wide
range of complicated sampling models, in situations where
it was well-nigh impossible to achieve a solution using
ordinary Monte Carlo or Importance Sampling techniques*

*http://www.thomashoskynsleonard.co.uk/personal_history 6.htm 8



What does this have to do with MICE?
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Bayesian Inference for Code Calibration™

X y
observed observed
inputs outputs

X n
observed simulated
inputs outputs

y(x:)=n(x,0)+e(x)+3(x;) i=1,...,n idenotes a measurement

e At various inputs x, we have measurements y, with
measurement error € and model error 0

 We have a sampling model or likelihood, L, fory

*D. Higdon et al., "Combining Field Data and Computer Simulations for Calibration
and Prediction," SIAM J. Sci. Comput. Vol. 26, No. 2, pp. 448-466 (2004)



Bayesian Inference, cont.

Suppose we have some prior knowledge about what we think the model
parameters, 6, must be for the simulator to agree with measurements.
Let t(6) denote the prior distribution.

The Bayesian formulation states:

The posterior is proportional to
n(@ | y) oc L(y | T](X,@)) X J'I?(e) the likelihood times the prior

Instead of thinking of 8 simply as an ordinary scalar or vector quantity, we
think of 68 as a random variable with a distribution associated with it

— initially, this is the prior m(0)
We want to find the posterior distribution of 6 given the datay, m(0]y)

— Then we can determine moments of (0 |y), Bayesian credible intervals, etc.
Also can determine posterior for variance parameters of sampling model, w(X|y)

All this involves combining observations with computer simulations



MICE Step IV
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Inference of 10 solenoid parameters and 4 measurement uncertainties

parameter prior posterior prior posterior
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151.623
123.752
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length of MCMC chain = 5000 after 5000 burn-in
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33.8
.0867
36.7
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Bayesian inference of the 4x4 Linear Map: Results

MaryLie/Impact ("true") 4x4 matrix:

4.81344E-01 -1.55775E-01 -9.60235E-03 3.10757E-03
4.83031E+00 5.13476E-01 -9.63599E-02 -1.02433E-02
9.60235E-03 -3.10757E-03 4.81344E-01 -1.55775E-01
| 9.63599E-02 1.02433E-02 4.83031E+00 5.13476E-01 |

Both of these

MCMC results (10K observations; MCMC length=75K+75K burn-in: ?yanfgfeefﬁacre
4.81349E-01 -1.55757E-01 -9.60723E-03 3.11229E-03]

4.82935E+00 5.13961E-01 -9.65443E-02 -1.03595E-02
9.65088E-03 -3.11962E-03 4.81362E-01 -1.55776E-01
| 9.66604E-02 1.02018E-03 4.82893E+00 5.13895E-01

HEEE EErva

0, 1.556 2.04e-4 0, -9.e-6 2.8e-5
0, -0.299 2.86e-5 0, -1.5e-5 2.9e-5
0, -1.374 1.00e-4 0, 4.6e-5 1.5e-4
0, -2.000e-2 3.83e-5 0, -8.8e-6 2.0e-4
Turns out (due to symmetry of MICE channel) that O -1.3e-5 9.8e-5
only 4 regression coefficients matter. 0,, -2.6e6 7.le-5 »

Note the small 6 compared to the mean of these 4.



Conclusions

* Bayesian techniques are extremely powerful and flexible

* Applied to MICE, they can be used for computer model calibration,
to infer the transfer map, to predict the impact of changes, to test
ideas, and to provide insight

* The examples here demonstrate how measurements and simulation
can be combined to

— infer model parameters, (e.g. magnet current settings) so that
the computer model agrees with expt, including distributions
that describe the uncertainty of inferred parameters

— infer the measurement uncertainty

— infer the transfer map

* The techniques should be broadly applicable to other accelerator
experiments as well



On-line example code

To try this yourself, you can download a sample code from
http://portal.nersc.gov/project/m669/bayes5term.£f90

Simulator: y=p1 + p2 x + p3 x"2 + p4 x*3 + p5 x*4 +&¢ (p1-p5 are calibration params)
7500 observations, observation error o = 0.25; 40000 MCMC steps
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