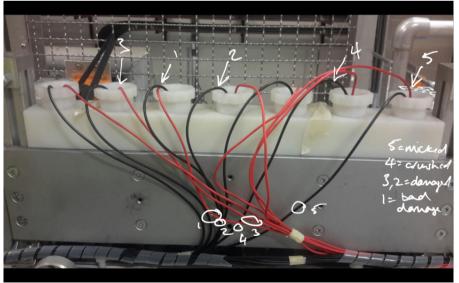


Detector Commissioning

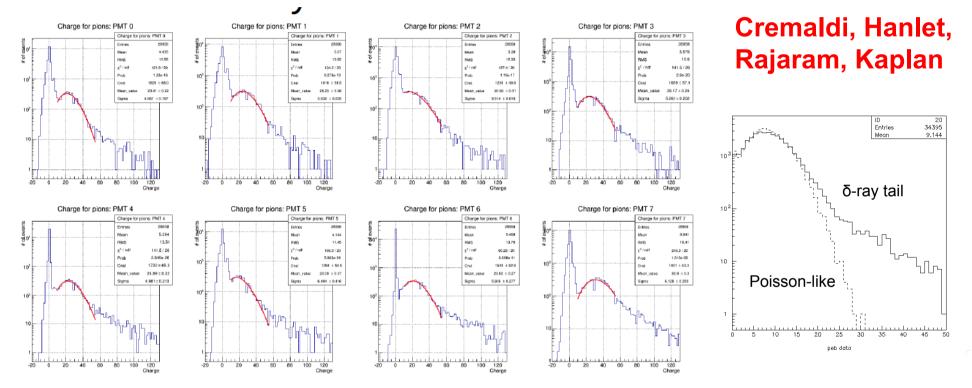
MICE CM42 RAL, 23 June 2014


Paul Soler

TOF Local B-field shield for TOF1 fitted in Nov. 2014 **Bonesini** Box shield with ARMCO TOF1 shielding UCL Gh. Grégoire January 10, 2007 Beam Virostek shield TOF1 Active area = 42 cm x 42 cm ุณ์คล่ Sezione MILANO RECO 1

Readiness TOF

- TOF system (TOF0,TOF1,TOF2) working smoothly since 2009: no foreseen problems for STEP IV
- Need to monitor presence fringe fields from solenoids
- One PMT found broken after TOF1 shielding operation
- During installation of PRY and installation of tracker, some cables were damaged and had to be fixed


Bonesini

MICE CM42, 23 June 2015

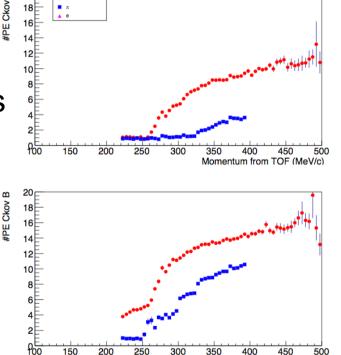
CKOV

Calibration 1 PE distributions as function HV

- Photoelectron modelling to finalise digitisation
 - Include Cherenkov, Poisson smearing, δ-rays, and pedestal noise – see Lucien's talk

MICE CM42, 23 June 2015

CKOV

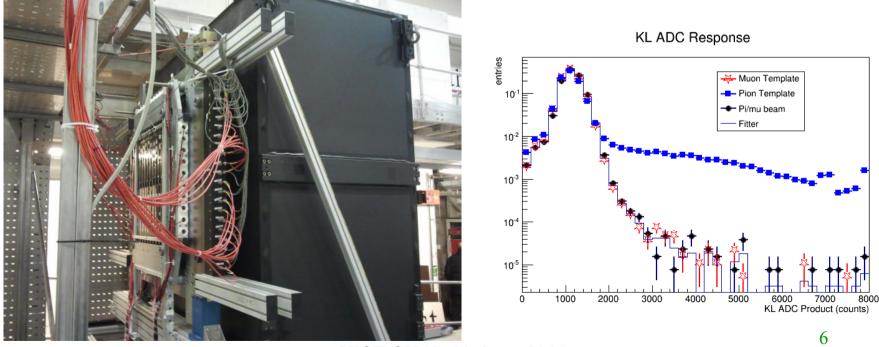


□ Further steps in commissioning:

- Verify gains of CKOV channels after first HV scans
- Perform a mini-HV Scan with new CAEN SY4527 +HV module
- Check aerogel Cherenkov thesholds
- Has aerogel density changed?
 - Shift in threshold to lower momenta.

 $\begin{array}{ccc} & \text{muon} & \text{pion} \\ P_{th_a} = 260 \text{ MeV/c}, \ 325 \text{ MeV/c} \\ P_{th_b} = 190 \text{ MeV/c}, \ 260 \text{ MeV/c} \\ \hline \text{This corresponds to a change in index} \\ n_a: 1.07 \rightarrow 1.09 \quad n_b: 1.12 \rightarrow 1.14 \end{array}$

 Dedicated momentum scans, with extra low and high momentum runs


Momentum from TOF (MeV/c)

KL

Remaining hardware: Orestano/Tortora

- Move to its final Step IV position after PRY installation during shutdown week in July
- Detector has been working well and was used in pion contamination paper

MICE CM42, 23 June 2015

KL

Commissioning KL:

Orestano/Tortora

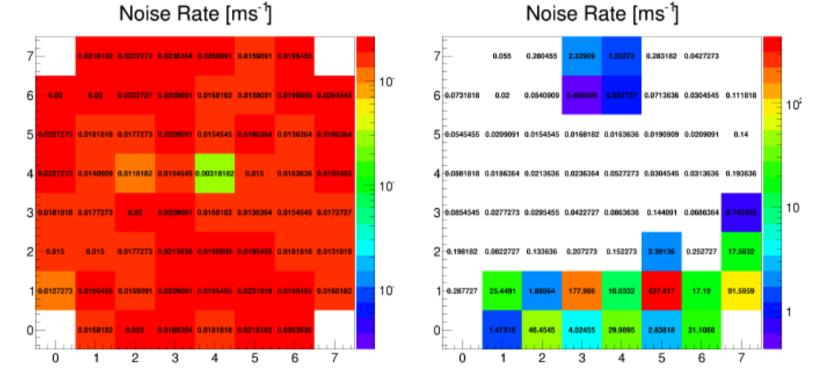
- No updates with respect to past CMs
- Need to collect statistics on all slabs, check all PMTs are alive, check beam profile, check equalisation of gains
- To collect enough statistics might need local trigger (TOF2) possibly also for cosmics
- New calibrations to be carried out after movement of KL
- Currently issues with recent MAUS version in decoding hope to be able to check things soon
- Need to revisit the shifter documentation (no significative change expected but need to be here to properly revise it – July 13-19)

October 2014: Drielsma

- EMR hardware extensively upgraded: new Hamamatsu R6427 PMTs, new rack, AC fan system, remote controlled AC power supply, HV PSU (PMTs), LV PSU, new VME and NIM crates
- Other issues fixed since October 2014:
 - 1 VHDC fails to configure FEBs, HV PSU did not start, LED not working (LV PSU changed), cosmic DAQ code bugs, two noisy FE boards, one single-anode PMT faulty and fixed

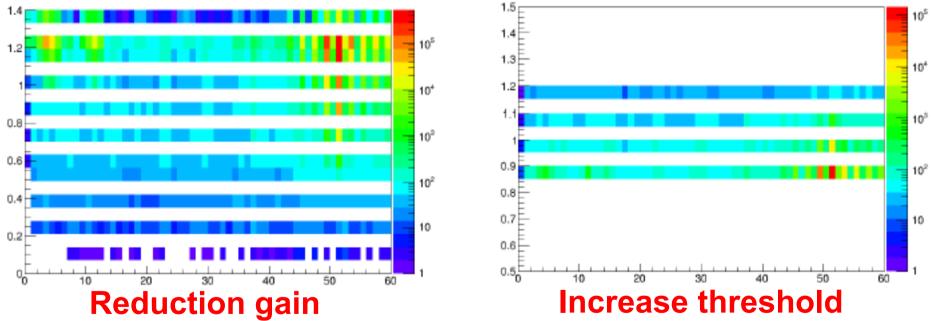
- Other issues fixed since October 2014:
 - HV PSU: 48 channels for SAPMTs (1500 V) and 48 channels for MAPMTs (700 V) remotely controlled

/home/epics/epicsDEV/Config/opi/edl/EMRmon.edl				_ = ×	
		EMR Monitor			Drieleme
SAPMT				MAPMT	Drielsma
1500.5 V 314.0 uA	South	PLANE 47 - Y	North	700.0 V 323.0 uA	
1500.5 V 317.0 uA	Bottom	PLANE 46 - X	Тор	700.0 V 322.0 uA	Hanlet
1501.0 V 315.0 uA	South	PLANE 45 - Y	North	700.5 V 322.5 uA	Hanlot
1500.0 V 314.0 uA 1501.0 V 314.0 uA	Bottom South	PLANE 44 - X	North	701.5 V 325.0 uA 700.5 V 320.5 uA	Παιπτι
1501.0 V 317.0 uA	Bottom	PLANE 43 - Y PLANE 42 - X	Top	700.5 V 320.5 UA	
1500.5 V 314.5 uA	South	PLANE 41 - Y	North	700.0 V 323.5 uA	
0.0 V 0.0 uA	Bottom	PLANE 40 - X	Top	700.5 V 326.0 uA	
1501.5 V 314.0 uA	South	PLANE 39 - Y	North	700.0 V 323.5 uA	
1500.0 V 316.5 uA	Bottom	PLANE 38-X	Тор	700.5 V 323.0 uA	
1500.5 V 315.0 uA	South	PLANE 37 - Y	North	700.5 V 321.5 uA	
1500.5 V 316.5 uA	Bottom	PLANE 36 - X	Тор	700.5 V 322.0 uA	
1500.5 V 314.0 uA	South	PLANE 35 - Y	North	700.0 V 321.0 uA	
1501.0 V 317.5 uA	Bottom	PLANE 34 - X	Гор	700.5 V 323.5 uA	
1500.5 V 315.0 uA 1500.5 V 315.5 uA	South	PLANE 33 - Y	North	701.0 V 321.0 uA 700.5 V 322.5 uA	
1500.5 V 314.5 uA	Bottom	PLANE 32 - X PLANE 31 - Y	l op North	700.5 V 322.5 uA 700.0 V 322.0 uA	
1500.5 V 316.0 uA	Bottom	PLANE 30 - X	Top	700.0 V 323.0 uA	
1501.5 V 314.5 uA	South	PLANE 29 - Y	North	700.5 V 320.0 uA	
1500.5 V 315.5 uA	Bottom	PLANE 28 - X	Тор	700.0 V 323.0 uA	
1501.0 V 314.5 uA	South	PLANE 27 - Y	North	700.0 V 321.0 uA	
1500.5 V 315.0 uA	Bottom	PLANE 26 - X	Тор	700.0 V 322.0 uA	
1501.5 V 317.0 uA	South	PLANE 25 - Y	North	699.5 V 321.0 uA	
1500.5 V 316.5 uA	Bottom	PLANE 24 - X	Тор	701.0 V 324.5 uA	
1500.5 V 314.5 uA	South	PLANE 23 - Y	North	700.5 V 323.0 uA	
1500.5 V 318.0 uA	Bottom	PLANE 22 - X	Гор	700.5 V 322.5 uA	
1501.0 V 314.5 uA 1500.5 V 315.0 uA	South	PLANE 21 - Y	North	700.0 V 323.5 uA 701.0 V 323.5 uA	
1500.5 V 315.0 uA 1501.0 V 313.0 uA	Bottom South	PLANE 20 - X PLANE 19 - Y	North	701.0 V 323.5 uA 699.5 V 322.5 uA	
1500.0 V 316.0 uA	Bottom	PLANE 18 - X	Top	700.5 V 322.0 uA	
1500.5 V 316.5 uA	South	PLANE 17 - Y	North	700.0 V 323.0 uA	
1500.5 V 316.0 uA	Bottom	PLANE 16 - X	Тор	699.5 V 323.5 uA	
1501.5 V 314.0 uA	South	PLANE 15 - Y	North	700.0 V 320.5 uA	
1500.5 V 316.0 uA	Bottom	PLANE 14 - X	Тор	700.5 V 321.5 uA	
1501.0 V 314.5 uA	South	PLANE 13 - Y	North	700.5 V 323.0 uA	
1500.0 V 317.0 uA	Bottom	PLANE 12 - X	Тор	700.0 V 323.5 uA	
1501.0 V 314.5 uA	South	PLANE 11 - Y	North	700.5 V 323.5 uA	
1500.5 V 317.0 uA	Bottom	PLANE 10 - X	Тор	679.5 V 314.0 uA	
1501.0 V 314.0 uA	South	PLANE 09 - Y	North	671.0 V 308.0 uA 700.0 V 323.5 uA	
1500.0 V 316.0 uA 1501.0 V 315.0 uA	Bottom South	PLANE 08 - X PLANE 07 - Y	North	700.0 V 323.5 uA 700.0 V 321.5 uA	
1500.0 V 316.0 uA	Bottom	PLANE 07 - Y PLANE 06 - X	Top	701.0 V 322.0 uA	
1501.0 V 315.0 uA	South	PLANE 05 - Y	North	700.5 V 324.5 uA	
1500.0 V 308.5 uA	Bottom	PLANE 04 - X	Тор	700.5 V 323.0 uA	
1500.0 V 313.5 uA	South	PLANE 03 - Y	North	700.5 V 322.0 uA	
1500.0 V 317.5 uA 📒	Bottom	PLANE 02 - X	Тор	700.5 V 322.0 uA	
1501.0 V 315.0 uA	South	PLANE 01 - Y	North	700.5 V 321.5 uA	
1500.5 V 317.0 uA	Bottom	PLANE 00 - X	Тор	700.0 V 322.0 uA	


MICE CM42, 23 June 2015

Noise in SAPMTs:

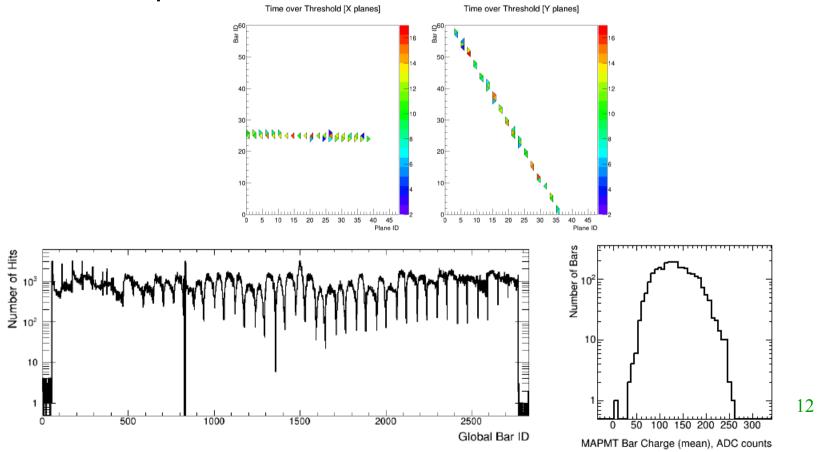
- 39 planes with vey little noise (< 1 ms⁻¹)
- 7 somewhat noisy planes (< 100 ms⁻¹)
- 2 very noisy planes (> 100 ms⁻¹)


MICE CM42, 23 June 2015

Noise in SAPMTs:

Drielsma

- Reduce gain of noisy MAROC channels ~0.75 (< 50 ms⁻¹)
- Increase discriminator threshold from 0.9 to 1 (< 50 ms⁻¹)
 Secondary hits


 Origin noise unclear (FEB, MAPMT?): noise does not overflow DBB buffer at the moment by reducing gain

EMR charge calibration:

Drielsma

- Require ~300k cosmics (~2-3 days)
- Measure mean charge \overline{Q}_{ij} and correction factor: $\varepsilon_{ij} = 1$
- Will require new calibrations after EMR movement in July

EMR status summary

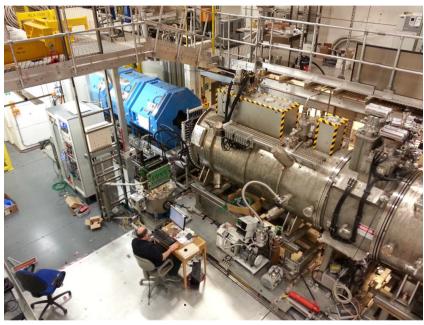
Drielsma

EMR hardware upgrade completed and commissioned

- SAPMT commissioned, 48 of them working and efficient (\checkmark)
- HVPSU \rightarrow fully operational, first control interface produced (\checkmark)
- 2 LVPSUs \rightarrow fully functional and in final state (\checkmark)
- CAEN VME crate → functional (✓)

EMR software

Completely functional MC and reconstruction (new data structure)
 Outstanding tasks


- Investigate the MAROC on the FEBs further (X)
- Try replacing the MAPMTs on the noisy plane (X)
- Produce a reducer and data quality flags (X)
- Calibrate the detector and output the ϵ_{ij} (1 or 2 week(s) in August)

Ready for Step IV

- Status at CM41:
 - Four cold cryostats
 - Faulty PSU on Downstream
 - Noise on all channels, above
 - Triggered and read out noise
 - Displayed plots on Online
 - Unpacking with MAUS was problematic
 - Internal LED was tested with waveguide

Overton

- New trigger interface started but incomplete
- Controls and Monitoring was overly complex, slow & prone to crashing

Progress since CM41: Overton

- Faulty PSU on Downstream Tracker: loose fuse in the PSU to backplane connections.
- Noise on all channels, above what was expected:
 - Experimented with a number of grounding schemes
 - Integration gate reduced from 200ns to 180ns (now 190ns on board)
- Number of boards were diagnosed with faults and swapped: invalidated calibrations from Lab 7 cosmics
- Controls and Monitoring:
 - Improved code exception safety to prevent common crashes
 - Extended functionality with a new derived class, which wrapped and used the original code base
 - Wrapped hardware Interface code with a new EPICS IOC.

Progress since CM41:

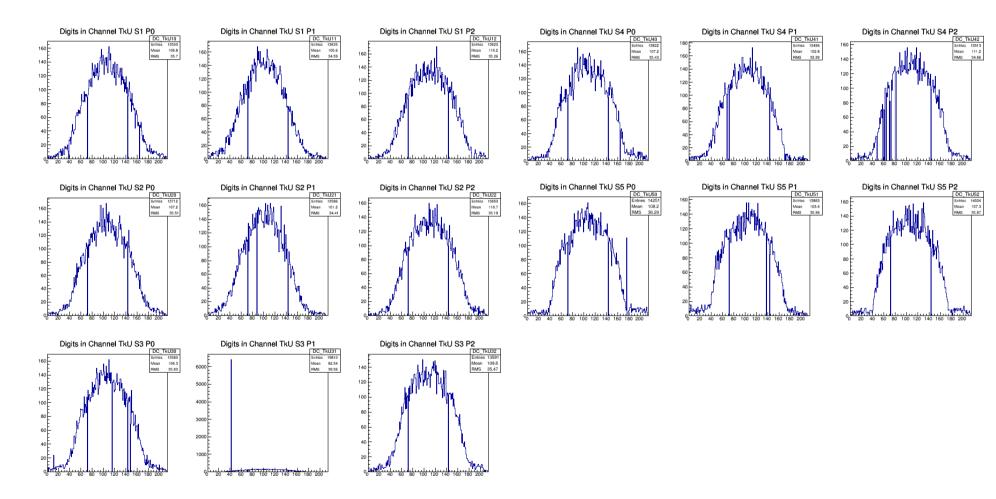
- Trigger Integration:
 - Yordan reviewed modifications and implemented in firmware

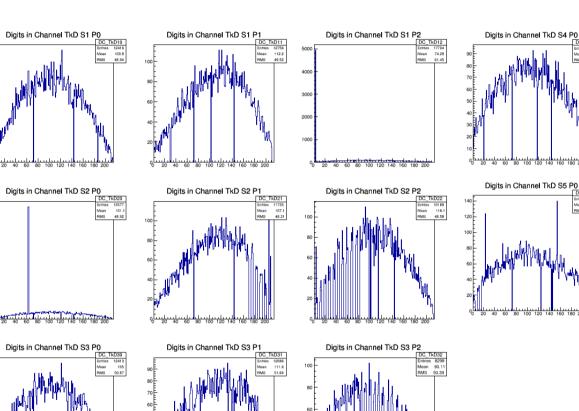
Overton

- Tested during Mock Data Run 3 (MDR3) but issues found
- Fixed post MDR3, in a two day post MDR3 debugging period.
- Unpacking issues:
 - Good progress on unpacking from MDR3
 - Data quality issues caused unpacking exceptions
 - Following getting good data from the upstream tracker, data was read correctly into MAUS

Week 1 (1 June):

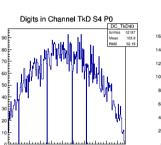
Overton

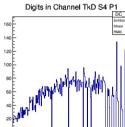

- Bias calibrations on the upstream tracker (with external pulser)
- Connected waveguides
- Bias calibrations on downstream tracker
- First pass timing using upstream tracker and TOF0
- Timed in upstream internal LED system
- Week 2 (8 June):
 - Replaced boards with readout issues on Cryo4, updated firmware, and ran calibration scripts
 - Moved external LED pulser around to complete calibrations
 - Attached downstream waveguides
 - Looked at internal LED on downstream
- Week 3 (15 June):
 - TOF1 for trigger: retimed to a pion beam @ TOF1
 - Connected upstream tracker and saw digits
 - Connected downstream tracker: GeoIDs were wrong, fixed.
 - Saw Digits!

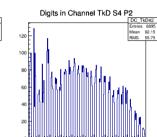

Upstream tracker hits:

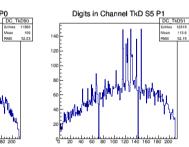
Tracker

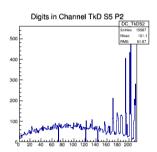
Heidt

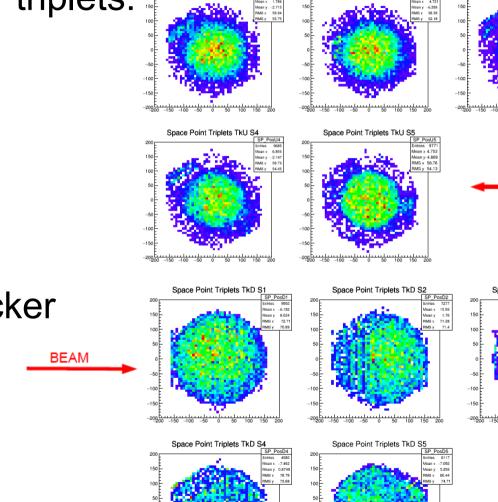

18

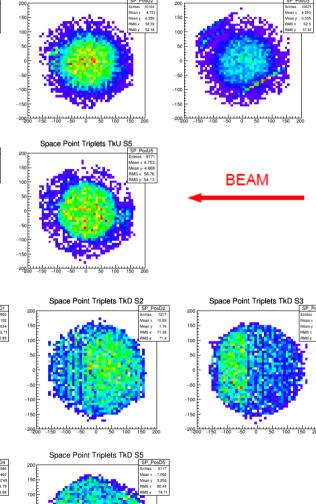



Downstream tracker hits:


Tracker


1200 1000




Heidt

Upstream tracker triplets: "

50 100 150 20

Space Point Triplets TkU St

Space Point Triplets TkU S2

-200 -150 -100 -50 0 50 100 150 20

Downstream tracker triplets:

Space Point Triplets TkU

- Issues remaining:
 - Upstream in pretty good shape
 - Downstream has known issues:
 - Two banks (256 channels) have readout problems
 - Station 4 probably has mapping or readout issues
 - Timing needs to improve to increase space point finding efficiency
- Plans:
 - Fix readout issues on the two bad banks.
 - Understand/fix issues with station 4
 - Re-check calibration
 - Careful timing studies...
 - Efficiency studies along the way...

