

Ideas for Control of MICE Cavities

- Example amplifier control system
- Example of current STFC copper cavity in operation
 - Using SF6 insulated waveguide
 - Conditioning process results
 - Temperature stabilisation for close control of cavity frequency
 - RF power measurement's
- Mice cavity control ideas

Andrew Moss STFC, ASTeC

Amplifier Controls

- Using local plc's/can bus interface read interlocks, analog setpoints and readbacks
- Build state machine in epics for amplifier control
 - 1. Aux on pumps air fans
 - 2. Standby on filament on, Grid supply's on
 - 3. HT on main HV power supplies on ready
 - 4. RF on enable RF drive
- Each state should show which interlocks are missing to enable the next block and which interlocks removed the state during a trip condition

Science & Technology Facilities Council

RF system overall control

- ALICE RF - 0 8 ALICE RF **RF Power Supply RFPSU Voltage** 0.00 kV Total Beam Current 0.00 A Alize W Insteal Seen Current -0.254 A 0.002 A RINARI CARIERY 0.217 A Bearin Carlient In Pusp Current 0.00 UA ion Pure Carriet 0.30 wh his Pang. Carnet: 0.60 cm 101.08 100 700 0.1021W DUDIES W 0.080.51 Epan Current 10.129 A Bade Curiert A 3KDLT 160 100 100 Its Passi Carnet 0.00 IA Intern Caret 0.00 uA ID LOVED WE 0.075 W 10.080 W 1.81.0 Line: 2 Life, Adv. Lines 1 LLDF May. TYPE THE. CAL 8.004 NW 8.008 AVV 0.006 MW HEY. FEY. - HEV 0.000 AW 0.0353/W -0.000 KW 705 0.042 W 0.052 W NO. 107 0.033 W 0.092 W 193 PVD TUE Buncher 0.000 kW 8,006 KWF 0.010 kW 0.012 WW 120 120 TEU. DEV. 0.000 kW 0.003 KW O CORE MAN 8,885,879 -111.00 21C MC 1000 FAD 100.00 12.24 O DEP BW TVE 0.008 KWF 0.000 V 0.000 V 0.001 kW/ NEU 100 REV O.DOT KW -5 DO2 8W Booster -0.001 NW 210 230 TED Def 11.74 1000 V ILODE V 0.11 LIV R DO MAY Linec 2 Cavit Coupler Temp 256.80 4.14 Cave 2: Cospilar Tanap 285 K Certify Yacase (Tors) 4.7e-10 1.00 11.00 1201/0 0.50 MW Interior Vacuum 1.3x 45 mbor Busines 1115 Adv. In T Couple Timp 2294 K -2.84 Carl & Caubiel Temp 230 K 1.2e-00 avery Vacuum (Tem) 10.04 1.00 Indiates Vacaum 1 Me-05 million Cox 1 Couples Van 18-12 micar Cer & Coupler Var 1 at 12 rebar
- State machine control
- RF measurements
- Important vacuum /voltage/ temperature parameters
- · Interlock status and trips
- This is the main operator panel for ALICE
- more in-depth control pages are clickable from this main screen

Science & Technology Facilities Council

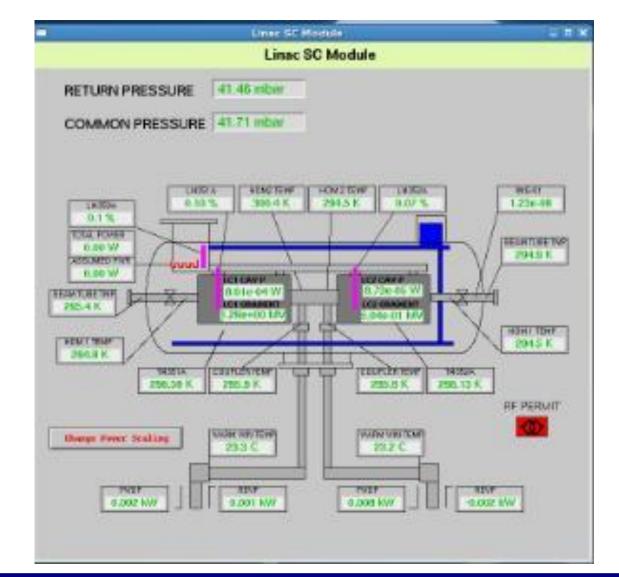
Interlocks required for 5 IOT amplifier's shown which interlocks are failed, Good, and those with timer bypass lops on them to allow the system to warm up

Things that warm up included the filament voltage and current – 15 minutes for these tubes Focus supplies that drive coils around the valves

After the timer bypass has finished the analogs are interlocked within a 5% good band and any movement outside this level trips the block

· /home/com	trota adl BC2 1013.		-	
HVPS I HVPS V BC2_IOT_Filament_I BC2_IOT_Filament_V BC2_IOT_Grid_I BC2_IOT_Grid_I BC2_IOT_Fonis_I BC2_IOT_Fonis_I BC2_IOT_Fonis_I BC2_IOT_Fonis_I BC2_IOT_Fonis_I BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_SCIP_V BC2_IOT_Coll_ret remp BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_Load_dofts_T BC2_IOT_DOP_DT_dofts_T BC2_IOT_OP_DT_dofts_T BC2_IOT_OP_DT_dofts_T	0.00 0.03 0.19 0.10 0.00 71.00 0.00 0.72 32663,19 0.08 0.07 0.01 3276,70 0.23,80 0.24,80 0.25,	<≥<><><><><><><><><><><><><><><><><><><	0.04 0.08 0.12 0.02	

Standby on status


	Standby ON Status	_ C X
	Standby ON Status	
EELP Standby on	BC2 IOT3 Als ok	LCJ 10TS ALC OK
DF cubicle temp sk	BC7 IOT3 Call flow ok	LCJ 1075 Call flow ok
Cubicle air con good	BC2 1073 Load flow ok	LCT 1075 Load flow ok
EH# Standby on enable	BC2 1073 F11 1 Los high	LC2 LOTS FIL I too High
전 전 12 22 20 20 20 M [BC2 DOT3 Fil I too low	LC2 10TS Pil I too low
BEI 1071 kir ok	acz IOT2 Pil V too high	Les fors Pil V tao high
DEI 1071 Coll flow ok	BC2 IOT3 FIL V too low	LCI IOTS PIL V too low
Gav 1 Combinet flow of	BC2 IOTI Grid I too high	LC2 IOTS Gild I too high
BEI 1071 Body flow ok	802 IOT3 Grid V too high	LC2 10TS Grid V too high
Cav I Circulator flow ek	BC2 IOT3 Grid V too low	LCJ 1075 Grid W too low
DE1 1071 Fil I teo high		LCI 10TS Portan 1 hligh
BCI JOTI FII I too Jow BCI JOTI FII V too high	SC2 LOT3 Focus I too low	LC2 1075 Pocas I too low
PEI 1071 FIL V teo law	BC2 1073 Forum V low	LC2 1075 Pages 9 tao low
DEI 1071 Grid 1 too hish	BC2 1073 L/P I too hish	Lez 1075 L/P I high
BEI 1071 Grid V too high	BC2 LOT3 1/P V Los high	LC2 1075 1/P V high
BEL IOTI GELG V Coo high	ac2 for3 1/P V too low	LC2 10TS 1/P V tao low
of1 1071 Frome I too high	mars	Tpare
DE1 1071 Forms I too low	Dinara dinara	Turce .
DEI 1071 Focus V too high	BCZ IOTI S/B on State ok	LC2 10T5 5/8 on State ok
BC1 1071 Focus V too low		Tare
DEI 1071 1/9 I teo high	LCI IOTS AIr ok	E Fpars
DC1 1071 I/P V too high	LC1 1074 Call flow ok	E Tpars
BEI 1071 L/P V Loo 1ew	LC1 1014 Load flow ok	Spare
Spare	LCI 1074 Anoda 11ow ok	Spars
Spare	LCI 1074 Pil I too High	E tpare
DC1 1071 5/B on State ok	LCI IOT4 PII I too Low	
and house why at	LCI 1074 FII V too High	
BC1 1072 Alt ok BC1 1072 Coll flow ok	LC1 1074 F11 V too low	
BEI 1072 Body flow ok	LC1 IOT4 Grid V ton high	
DE1 1077 F11 1 too high	LCI 1074 Geld V too low	
BC1 1077 F11 I too low	LCI LOT4 Poess I high	KEY
BCI 1072 Fil V tee high	LCI LOTS PORME I hop low	Goed
BE1 1072 Fil V teo lew	LCI 1074 Pocus V high	0000
DC1 1077 Gold 1 too high	LC1 LOT4 Poctas V too low	Tal 1al
BC1 1072 Grid V too high	LCI 10T4 1/P 1 high	Hard But not Required for Standby ON
BEL 1072 Grid V too low	LCI TOTS I/P V high	- men ber nor render we on Scendery Cre
OCI 1073 Focus I high	LCI IOT4 I/P V too low	
BEI 1077 Focus I too low	Spars	
DC1 1072 Focus V High	Boate	
BEL 1072 Forms V low	ECI IOTE S/B on State of	
DC1 1072 I/P I too high		
BC1 1072 I/P V too high		
BC1 10T2 I/P V too low		
Spars		
Opara		
DE1 1072 5/B on State ok		

Cavity parameter screen

Cavity

- Temperature's
- Pressures
- Vacuum
- RF signals
- Acceleration voltage
- RF Permit

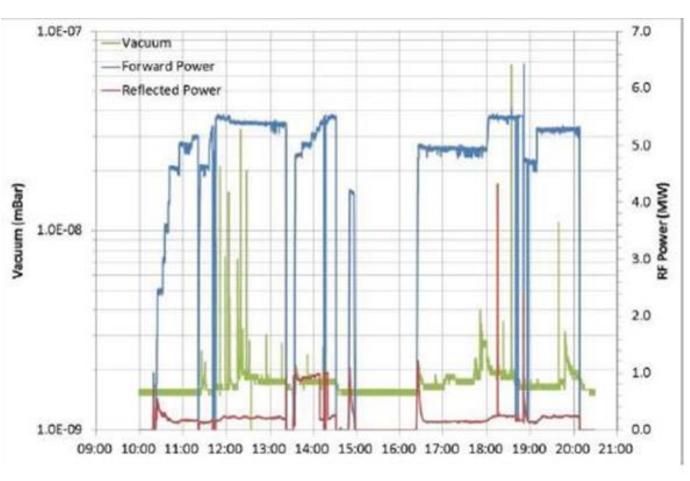
Ready on status and Trip

RF ON Ala	1111		
RF On Alarms			
8111071.09.00_8tate_Ale	Lt2_1075_Arc_dataot_Ala		
BC1_1092_RP_on_0tata_Ala	DC1_HQ_FHDP_Alm		
BCZ_1073_RP_on_State_Als	DC1_HG_REVP_AIm		
BC2_1074_RP_on_State_Abs	DCL_CAVP_AIN		
807_1095_8P_on_State_Als	E BC2_BC_FEDP_Alm		
Boostar_RF_on_State_Ala	DCI_RG_REVP_Alm		
LINAC_RF_on_State_Alm	BC2_CAW_Ain		
RR.P. RP. on, anable Alm	BCL Boan_tube_toop_Atm		
Cryo_RP_enalite_Alie	B05_Roam_tube_tomp_Alm		
Booster_mehile_vacum_hl	Dil_Compler_temp_Alm		
Linac_mobils_vacuus_Als	DC7_Coupler_temp_Aim		
BCL_HOVI_RP_DC_FMDP_AIM	ECL_HOH_1_temp_Alm		
RELIGPLER DC REVE ALM	BCL_HOH_J_tomp_Aim		
BC1_10P1_FHDP_Alm	DC2_BOH_1_tsap_Aim		
BC1_1091_R099_Alm	DC2_BOH_2_temp_Alm		
Cavi_Combiner_delta_T_Al	BCL Name_window_PH_Alm		
Cav_1_Circ_delta_T_Ale	BC1_Cold_window_PH_Alm		
BC1_10T1_Acu_debect_Alm	DC2_Harn_window_FH_Aim		
DC1_1072_RF_Dr_FMDF_Alm	DC7_Cold_window_FH_Ain		
BCL_1072_RP_Dr_REVP_AIm	LC1_HG_FHIP_A1m		
0c1_1072_FHDP_Alm	LCI_HC_REVP_Alm		
Dc1_1072_REVP_h1m	Lel_cave_ain		
DC1_1072_Arc_detect_Alm	LCZ_HG_FHDF_Alm		
BC2_1073_BF_DC_FWDP_A1m	LC7_RG_REVF_Alm		
BC7_1077_BP_Dr_BSNP_h1m	LC2_CAVP_AIn		
D22_1071_FHD0_A1m	Ltl_Boan_tube_tomp_Aim		
BC2_1073_RDVP_ALm	LC7_Buan_tube_tump_Aim		
BC7_1073_Load_delta_T_A1	Lfl_Coupier_temp_Aim		
http://www.dotaot_Ala	Lt2_Compler_temp_Aim		
LC1_1094_RP_Dr_FHDP_Alm	Lel_BOH_1_tomp_Alm		
LC1_10P4_RP_dr_REVP_A1s	LC1_BOH_7_Comp_Aim		
LCL_1074_FHIP_AIM	LC7_BOH_1_tomp_Aim		
L/c1_1094_HESP_A1m	LC7_HOH_5_tomp_AIm		
LC1_1074_Load_dalta_T_A1	Lel_Harn_window_Fit_Alm		
LC1_1014_Acc_detect_Aim	LC1_Cold_window_FH_AIm		
LC2_1075_RP_Dx_FMDP_A1m	LC7_Hate_window_PH_Ain		
LCP_1095_0P_Dr_0009_Ala	LC2_Cold_window_PH_Aim		
#1A_90H9_2701_251	tpara_RF_on_Alm_1		
LCT_10TS_REVP_ALM	Epare Rf_on_Aim_2		
LCT_1075_Load_delta_T_Al	Epare_HF_on_Alm_J		

Interlock in RED is the FIRST interlock that trip the RF block OFF

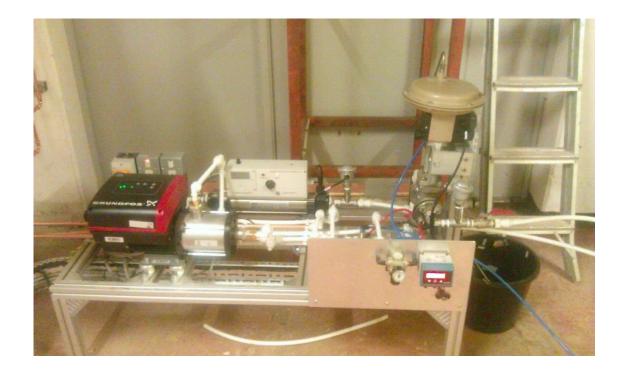
Interlocks in RED are preventing HV switch on

Vela Machine


Parameter	Value	Units
Frequency	2998.5	
Bandwidth	< 5	MHz
Maximum beam energy	6	MeV
Maximum accelerating field	100	MV/m
Peak RF Input Power	10	MW
Maximum repetition rate	10	Hz
Maximum bunch charge	250	pC
Operational Temperature	30 - 45	°C
Input coupling	WR284	

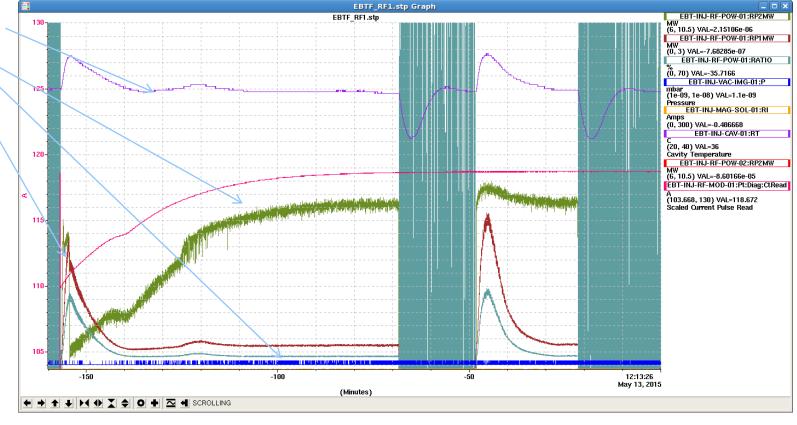
- RF local rules in place to that govern all work carried out on the RF system
- Waveguide pressurised to 1Bar with SF6
- Interlocks prevent operation of system if pressure to low
- Moving to SF6 reclamation and auto refilling soon that has no emissions
- Handling measures well understood within STFC

Conditioning of VELA Cavity


- Trip on vacuum only
- Steady build up of power and pulse length
- RF operators used as controlling action
- Each trip resulted in a small reduction of RF drive level – RF straight back on
- Proposals to run unattended automated conditioning system were abandoned as they were not needed
- Conditioning is remembered by the cavity, even after venting
- Provided RF components are correct for the task (windows and couplers) conditioning is achieved within a week of shifts

Cavity coolant stabilisation

- Cavity on frequency at 36.5 degrees currently (changes with cathode installation)
- water cooling system with heater, cold water and mixing valve control by high resolution process controller that self learns
- Water flow rates on cavity are very restricted due to small cooling pipes
- When RF is applied at 10MW system needs 5 minutes to recover temperature setpoint due to added heat load
- 0.05 degrees cavity temperature stability can be achieved
- RF trips result in cavity detuning which can again take 5 minutes to recover from
- RF is always applied at effectively maximum



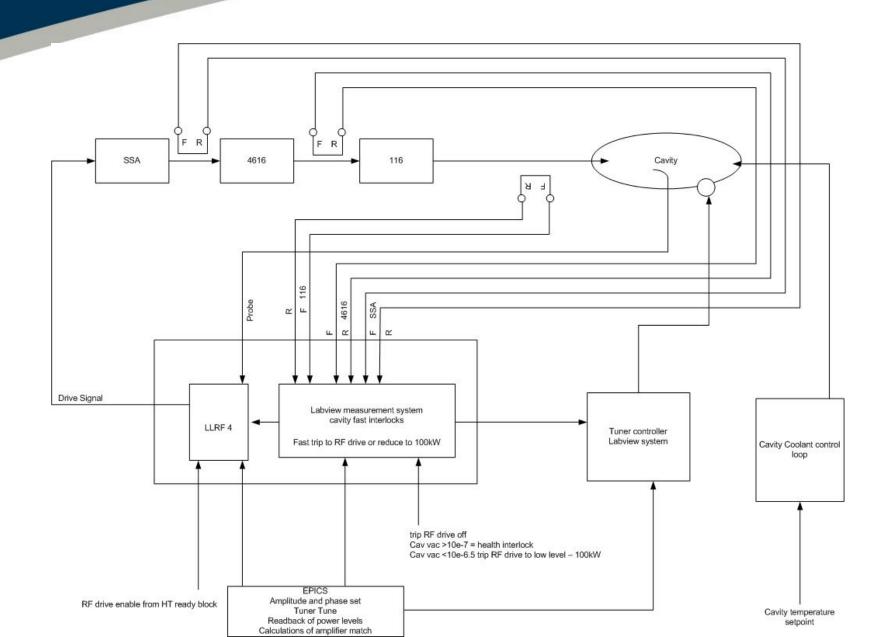
Cavity coolant control loop

- Forward power
- Reflected power
- For/ref power ratio
 - At RF switch on for/ref power ration will be 30%
 - After 5 mins operation ratio is below 10% and settles to 3 %
 - Trip effect can
 be seen
 - No RF staff involvement during normal physics shifts

RF power measurement

- Cavity probes are normally 50-60dB and used in control loops to maintain cavity voltage and phase angle.
- Values of 0.01 degrees and 10-4 % amplitude control is possible
- Waveguide/coax power couplers in the MW class can be upto 70-90dB down on the signal passing them
 - There accuracy is then very compromised, particularly the reflected power measurement with has a directivity factor to add which further compromise's the accuracy of this signal
 - An error in calibration of even 0.1dB can make a huge difference to the measured RF power
- Forward power will be changing during the RF pulse driven by the LLRF to compensate for tuning, HV voltage droop etc

VELA Similarity's with MICE

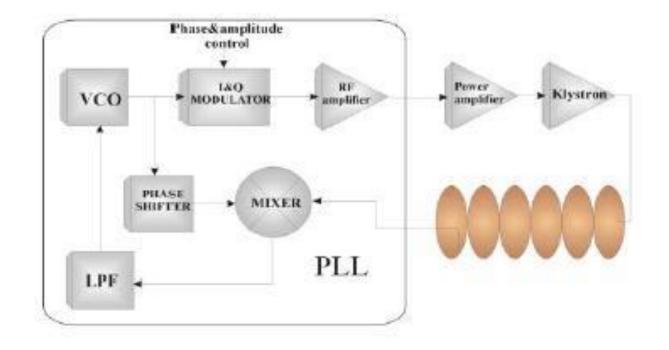

- SF6 use and all safety concerns
- MW class driver and associated RF measurement's
- Cavity coolant control looks critical and we can use systems like the VELA design to achieve good results
- MICE cavity has tuner that can provide additional control that should only be needed on a slow control loop due to pulse rate
 - Do we want this tuner to be highly active all the time ?
 - Limited life span?
 - Temperature control would be better to remove large temporary errors from system
 - LLRF can run in open loop mode to remove high peak powers under detuning conditions

MICE LLRF control ideas

- Cavity should ideally be on resonance above all possible ambient temperature possibility's in MICE hall ~ above 30 degrees C
- Provide a high stability process controlled coolant temperature that can maintain cavity at desired frequency to a high level of stability so that this is the primary tuning method for operation over sustained periods
- At RF switch on, run in open loop at predetermined RF power levels and allow coolant control loop to catch up - bring cavity back on tune
- Under operator control move the RF power level up towards the desired level
- At design RF power level under stable conditions close LLRF control loop and activate the cavity tuner to maintain close control

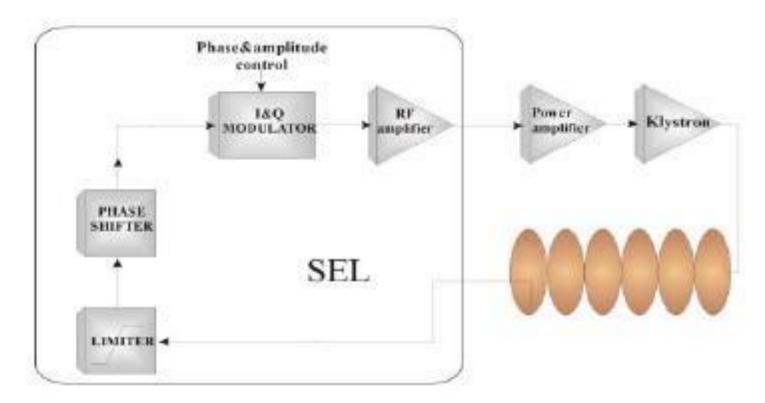
LLRF

- Use code already developed and running at a number of installations at Daresbury to provide digital LLRF control loop with operator selectable P&I control loops and open/closed loop control
- Install process control cavity coolant temperature system to remove cavity resonance errors under all conditions and only close loop under well understood conditions
- For amplifier and cavity RF power measurements use a labview based system with RF detection to monitor power levels and interlock for problem conditions – this can include reflected power issues from the couplers – vacuum conditions etc and provide fast trip control to the RF system
- In addition the labview system would determine the tuning functions required
- The mechanical tuner transition from push/pull should be avoided as the system would become unstable very quickly

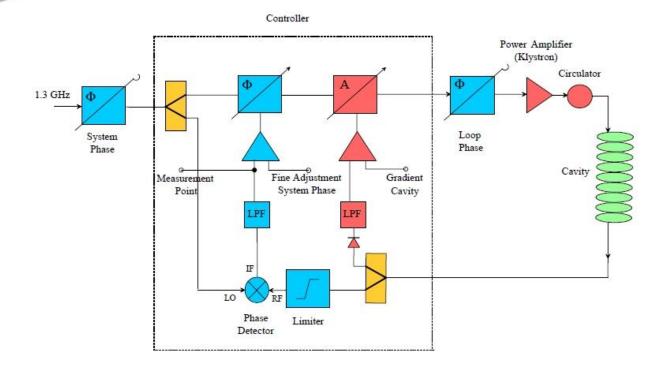


Backup slides

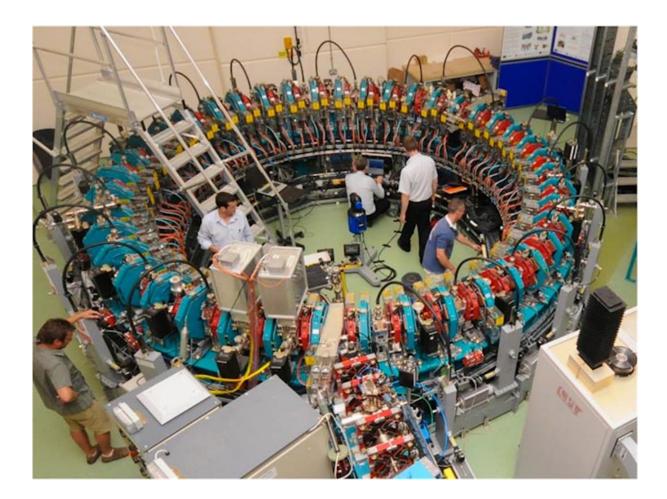
• For discussion


Generator driven loop

Oscillator driven system where oscillator frequency must be within the bandwidth of the cavity in order for the loop to function, **standard control for loop for accelerator cavities**


Self excited Loop

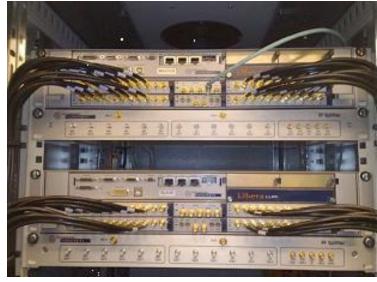
Cavity resonant frequency is used to form oscillator that can then be controlled in phase and amplitude, useful for high power conditioning and tuning


ALICE 1.3GHz LLRF

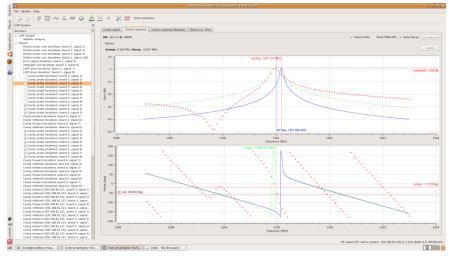
- Cavity bandwidth ~120Hz
- Q= 10*7
- 11MV/m gradient
- Analog control loop using op amps give very fast control
- 0.2 degrees
- 0.1 % gradient
- No active tuner control – operators tune cavity to limit reflected power

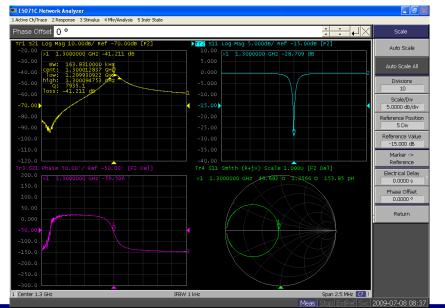
EMMA Parameters & Layout

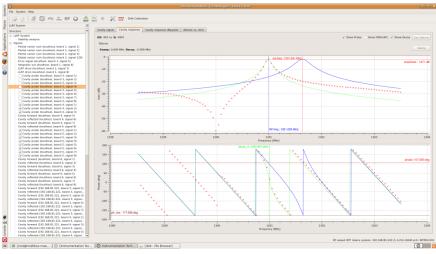
- One IOT amplifier driving 19 copper cavities via waveguide splitters
- Water cooled cavities with plunger tuner
- Cavity Q 8000 but all different
- BW ~163KHz


Frequency (nominal)	1.3 GHz
No of RF cavities	19
Repetition rate	1 - 20 Hz at 1.6mS PRF
Power Per cavity	90kW Pulsed 4.7kW

Diagnostics Beamline


EMMA LLRF


- Instrumentation Technologies Libera LLRF system provides
 - Initial cavity setting conditions
 - Control of the cavity amplitude and phase to ensure stable controls the acceleration
 - Global vector sum of all 19 cavities in control loop
 - Forward and reverse power monitoring to each cavity
 - IOT power levels before and after the circulator
 - 1.3GHz +/- 1.5/-4MHz operation is possible
 - So wide tuning range is needed

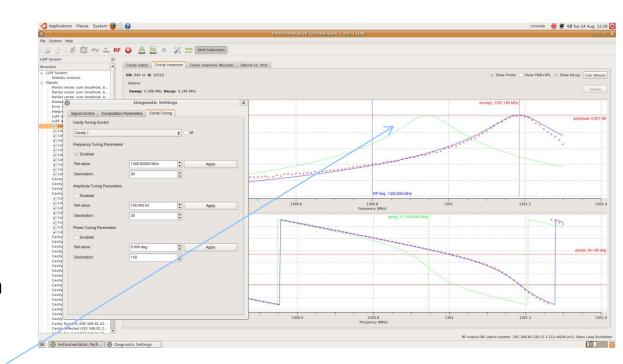


Digital LLRF sweep of cavity frequency

- Two cavities in the EMMA ring showing initial frequency positions
- All 19 cavities need to be tuned in frequency
- VNA plot of an EMMA cavity

Frequency tuning

•Changing cavity frequency takes – 60 minutes


•Tuner motors using epics system to move motors in open loop only

•Using centre frequency and bandwidth controls 'sweep analysis' locates resonance of each cavity in system

•A new centre frequency can then be set and the tuner motors driven

•Calc detune shows new resonance of cavity

•Low reflected power response used to fine tune each cavity

Water cooling of cavity to maintain frequency although not tightly controlled Auto frequency tuning was never enabled due to problems with motor controls

Control of cavities with narrow bandwidths

- Find cavity using SEL or frequency sweep method
- Move cavity tuner to bring each cavity on to desired tune point
- Switch to GDR at low power and monitor/reduce reflected power of each cavity in the system
- Raise power level and monitor tuning of each cavity of short time (10 minutes)
- Raise power level to 50% and repeat monitoring of reflected power level
- Perform tuning of cavity at this power level to understand drift of tuning with respect to RF heating
- Cooling water temperature can be used to aid frequency tuning and regulation to 0.5 degrees relatively easy to accomplish – 0.1 is possible with correctly designed water circuits

Current status Digital LLRF at DL

- Controlling copper 1.3GHz cavity, 3GHz Gun
- Controlled cavity filling to reduce reflected power during cavity switch on is software coded
- SEL/GDR loops in regular use
- Tasks for this year
 - Aug 2014 control of SCRF cavities at 1.3GHz
 - Nov 2014 control of cavity tuners via EPICS system to maintain tuning
- Other developments to work on
 - Collaboration on 201MHz LLRF control for MICE and ISIS linac
 - Test on DL test system controlling amplifier into test load
 - Test two 1.3GHz cavities from one amplifier to understand tuning features