MICE Demonstration of Ionization Cooling

JB. Lagrange, J. Pasternak

Outline

Q Demo lattice
QOptimization
Q Lattice Length
@ Beta-value (Preliminary)
Q140 MeV / c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Outline

Q Demo lattice
QOptimization
Q Lattice Length
@ Beta-value (Preliminary)
Q140 MeV / c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Demo Lattice

Radiation shutter and movable

 secondary LiH absorber.

Initial beam

- Pure muon beam, ~ 10000 particles
- Position: before first plane upstream tracker (after diffuser)
- Gaussian distribution
- Normalised rms longitudinal emittance $=20 \mathrm{~mm}$
- Normalised rms transverse emittance $=6 \mathrm{~mm}$

Cuts

- PID cut
- Transmission cut
- Radial cut r < 200 mm , at first and last plane.

Outline

Q Demo lattice
Q Optimization
Q Lattice Length
@ Beta-value (Preliminary)
Q140 MeV / c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Optimization

- Optimization through 2 parameters
- phase advance of the channel
- Strength of the focusing elements

Phase advance

- Phase advance is computed from the last plane of the upstream tracker to the first plane of the downstream tracker.
- Different phase advances for different lattices show the same effect: phase advance should stay between half-integer resonances. 630 deg. ($1.75 \times 360 \mathrm{deg}$.) seems to be the optimum:
- Best momentum acceptance,
- smallest non-linear effects (chromatic mismatch downstream minimized).

Focusing strength

- Once the phase advance and values of beta at the absorbers is decided, only free parameters are
- the length between SS and Cavity module,
- the length between the AFCs.
- Different cases show that M1 should be minimized to limit non-linearities. so the length SS-Cavity should be kept minimum (case of the CM41 lattice)
- Different cases show that large values of beta in the FC trigger strong non-linearities.
\Rightarrow Optimum of the length AFC-AFC.

AFC - AFC Length

- Different lengths have been tested
- Lo (updated CM41 lattice)
- $\mathrm{L}_{1}\left(\mathrm{~L}_{0}-376.5 \mathrm{~mm}\right)$
- $\mathrm{L}_{2}\left(\mathrm{~L}_{0}-187.0 \mathrm{~mm}\right)$
- $\mathrm{L}_{3}\left(\mathrm{~L}_{0}-93.5 \mathrm{~mm}\right)$
- $\mathrm{L}_{4}\left(\mathrm{~L}_{0}-46.7 \mathrm{~mm}\right)$
- Best performances for length $\mathrm{L}_{0}, \mathrm{~L}_{3}$ \& L_{4}. $\Rightarrow \mathrm{L}_{4}$ seems to be the best lattice.

AFC-AFC Optimization

Transverse beta

AFC-AFC Optimization

4D emittance

Optimized Lattice

Outline

Q Demo lattice
QOptimization
Q Lattice Length
Q Beta-value (Preliminary)
Q140 MeV / c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Beta-value optimization (Preliminary)

- Different values of β at the central absorber are being tested:
- $\beta_{0}(53 \mathrm{~cm})$
- $\beta_{1}(46 \mathrm{~cm})$
- Same performance
\Rightarrow Optimum between?

Beta-value optimization

Transverse beta

Beta-value optimization

4D emittance

Outline

Q Demo lattice
QOptimization
Q Lattice Length
@ Beta-value (Preliminary)
Q140 MeV/c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Preliminary: $140 \mathrm{MeV} / \mathrm{c}$

Transverse beta

Preliminary: $140 \mathrm{MeV} / \mathrm{c}$

4D emittance

Preliminary: $240 \mathrm{MeV} / \mathrm{c}$

Transverse beta

Preliminary: $240 \mathrm{MeV} / \mathrm{c}$

4D emittance

Outline

Q Demo lattice
QOptimization
Q Lattice Length
@ Beta-value (Preliminary)
Q140 MeV / c \& $240 \mathrm{MeV} / \mathrm{c}$ (Preliminary)
Q Summary and future plans

Summary

OOptical parameters have been studied and optimization of the length have been done.

OBest performance for length L_{4} (5.5\% 4D cooling).
OSame performance for β_{0} and β_{1}.
OPreliminary results for 140 MeV / c and 240 MeV / c.

Future plans

- Study of different emittances for
- 140 MeV / c,
- 200 MeV / c,
- 240 MeV / c.
- Paper including all settings to be finalized soon.

Thank you for your attention

Back-up slides

CM41 Demo Lattice

Magnetic field

CM41 lattice

Transverse beta

CM41 lattice

4D emittance

CM41 lattice

6D emittance

