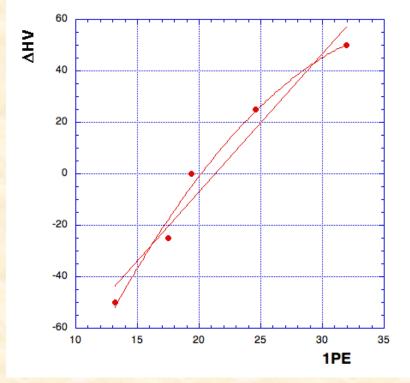
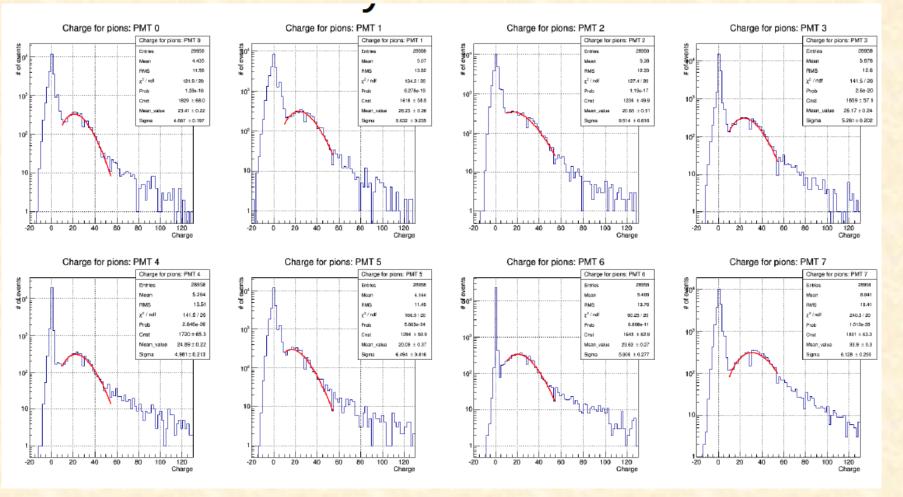

MICE CKOVs - Brief Update

Miles Winter, Michael Drews, Dan Kaplan (IIT), Lucien Cremaldi (UM) +others


- Hardware update.
- Thresholds and calibration.
- Detection of high momentum muons and pions.
- Below are files processed by Michael and Miles for our studies.

Muons: High MeV/c Response

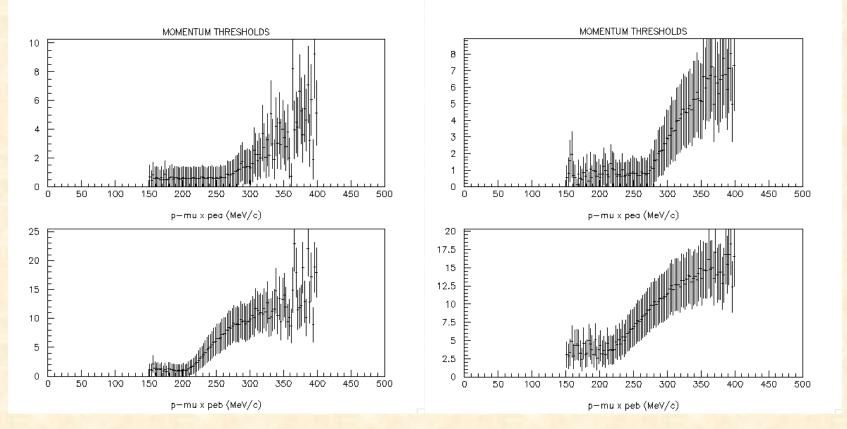
HARDWARE UPDATE


- HV scan was performed summer 2014 with CAEN ST1527 HV.
- Nominal default HV settings were determined to the pmt balance gains.
- A new CAEN SY4527 +HV module is being installed and we should verify that gains have not changed.
- With a quadratic fit and adjusting 1PE=25, the results are given below. The other channels are similar.

PMT0	HV0	delta_HV	HV_NEW
PMT1	1610	25.8	1635.8
PMT2	1520	6.8	1526.8
PMT3	1570	28.7	1598.7
PMT4	1620	3.0	1623.0
PMT5	1540	-10.5	1529.5
PMT6	1715	16.9	1731.9
PMT7	1550	-15.3	1534.7
PMT8	1500	-27.2	1472.8

HARDWARE UPDATE (cont)

- These are examples of muon/pion data from which 1PE signals are easily extracted.
- A simple gaussian fit is used to find the estimate 1pe peak.
- This calibration/fit could be performed run-by-run and automated.



MOMENTUM THRESHOLDS (pre-2014 data)

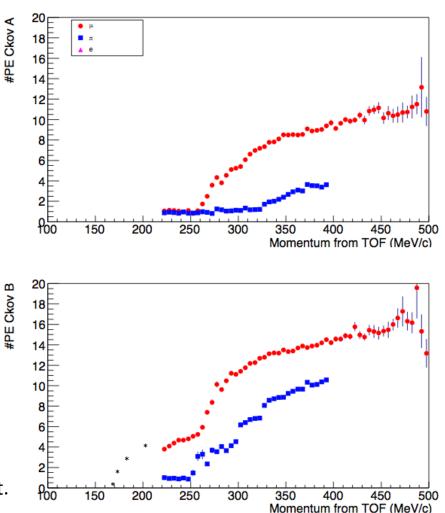
- In pre -2014 data thresholds we plot the pe vs p, where (p taken from tof.
- We do a histogram of p weighted by pea(b) and divide by histogram of p.
- The aerogel n112 and n107 thresholds are at 210 MeV/c and 270 MeV/c.
- These thresholds correspond to n107 = 1.07 and n112=1.11, close to the expected values.

237 Mev/c data

290 Mev/c data

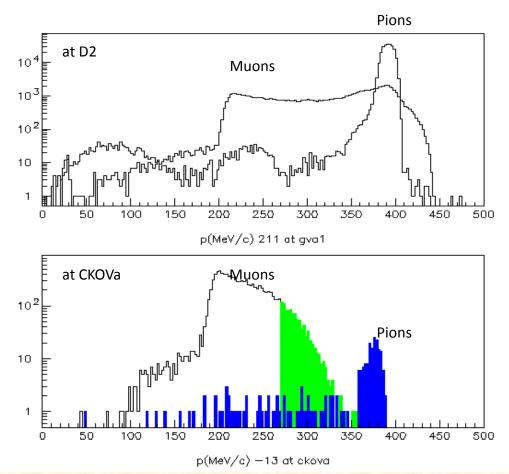
MOMENTUM THRESHOLDS (2015 data)

• From 2015 P—scan data Ryan B performed an analysis of thresholds. The results show a shift in threshold to lower momenta.

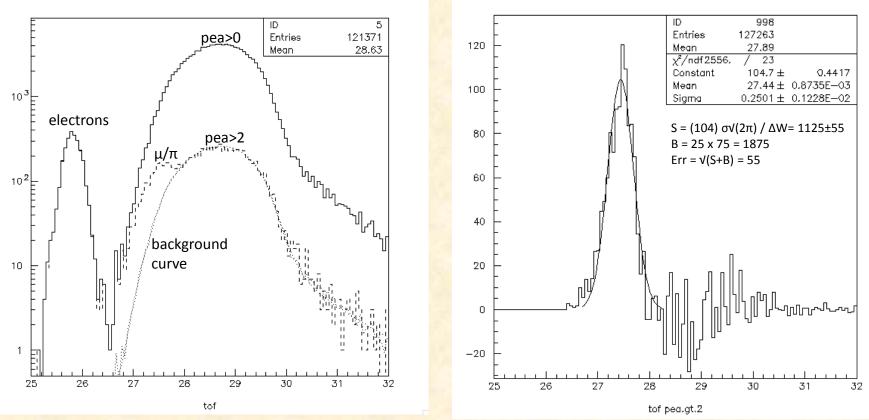

 muon
 pion

 Pth_a = 260 MeV/c, 325 MeV/c

 Pth_b = 190 MeV/c, 260 MeV/c


- This corresponds to a change in index n107 = 1.09 n112 = 1.14
- The original densities are measured $\rho = 0.261 \text{ g/cc}$ $\rho = 0.371 \text{g/cc}$
- Aerogel panels sizes are 1.15x1.15x1. cm³
- The aerogel density could have changed? $n = 1. + 0.27 \rho(g/cc)$ $\otimes n = 0.27 \otimes$ $\otimes \approx = 0.02/0.27 = +0.07g/cc$
- This Increase in aerogel density is puzzling.
- A p scaling problem might also explain the shift.

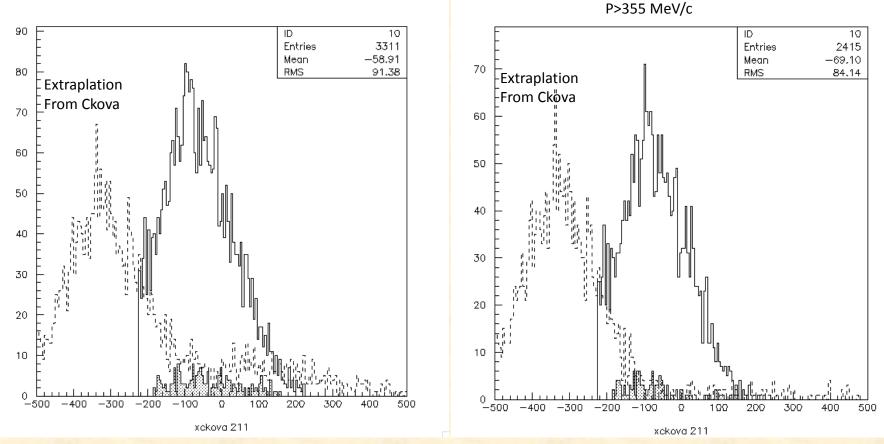
http://micewww.pp.rl.ac.uk/issues/1667


HIGH MOMENTUM PIONS AND MUONS

- G4BL suggests our pion contamination from high momentum π 's leaking through D2.
- The high momentum muons and pions will trigger in CKOVa.
- We expect 1-2pe signals at thresholds p_{μ} >270 MeV/c and pions p_{π} >355 MeV/c. This signal should be prominent in 237 MeV/c data.

HIGH MOMENTUM PIONS AND MUONS - DATA

- We look in a sample of 237 MeV/c Muon Data, and required a pea> 2 cut.
- A shoulder at 25.5 ns in the tof spectra indicates about 1125 \pm 55 fast μ/π 's.
- pea>2 is highly efficient for electrons are highly efficient.
- On the right is a gaussian fit to the residual S(pea>2)-B. (B scaled from pea>0 shape).
- The separation of fast μ/π 's can only be made at the MC level.



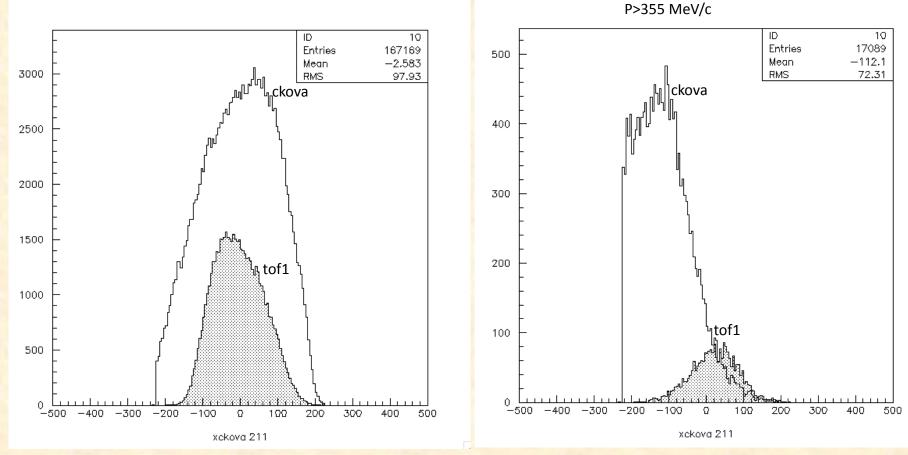
HIGH MOMENTUM PIONS AND MUONS – G4BL

- We (Dan) performed a series of G4BL runs at 237 MeV/c with John N deck. ٠
- The position and # of pions are displayed at CKOVa and TOF1 (hatched). **Pions**
- Pions (3311) at CKOVa •
- Pions (196) at TOF1 •

Pions w p > 355 MeV/c

- Pions (2415) at CKOVa
- Pions (107) at TOF1

HIGH MOMENTUM PIONS AND MUONS – G4BL

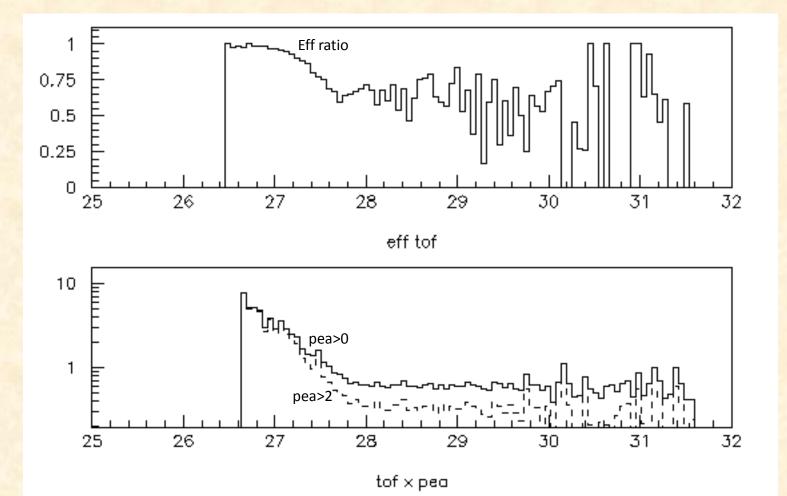

The position and # of muons are displayed at CKOVa and TOF1 (hatched).

Muons

- Muons (167169) at CKOVa
- Muons (55924) at TOF1

Muons w p > 270 MeV/c

- Muons (17089) at CKOVa
- Muons (2341) at TOF1

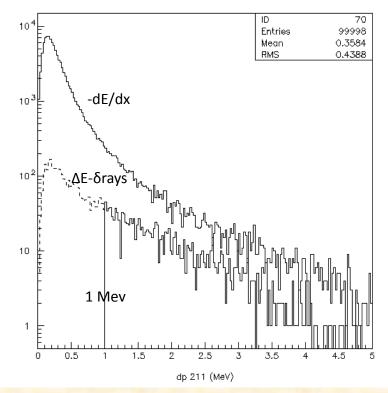

HIGH MOMENTUM PIONS AND MUONS – G4BL SUMMARY

CKOVa	D2	CKOVa	TOF1
All			
MUONS		167169	55924
MUONS P>270		17089	2341
PIONS		3511	196
PIONS P>355		2415	107
HIghP μ/π Data		1125±48 1411±56 eff corr	
All beam w/o e+-	118793		

π/μ ratio	=107/2341=0.046±0.004	
$f_{\pi+\mu}$ ratio	=1411/118793 =0.012	

HIGH MOMENTUM PIONS AND MUONS – EFFICIENCY

- Take an independent sample of muons and evaluate the tof with and w/o the pea>2 cut.
- The ratio is a fair approximation of the cut efficiency vs tof.



Photoelectron Modeling for MAUS

- A full ckov photoelectrons model should include cherenkov, δ -rays, and pedestal noise.
- Delta rays production is significant at the 3-5% level. Pe≥1MeV/c radiate-čerenkov light.
- Photoelectron data can be reproduced by a poisson light distribution using mean pe-yield and directly adding additional light from δ -rays as a tail; avoiding optical photons in G4!
- Pedestal (pe=0,1) not Poisson-like and must be studied (most challenging).

-dE/dx and Delta ray Spectrum

COMMISSIONING

- We should perform a mini-HV Scan with new CAEN SY4527 +HV module in place.
- We should check aerogel thesholds and/or density with 2015 data.
 - Standard 237, 290 MeV/c muon runs are adequate.
 - Or a dedicated p scans ccan be performed.

SUMMARY

- We performed some CKOV analysis of high momentum μ/π .
- We are working on some methods of characterizing the CKOV efficiency.
- We are working on MAUS simulation of photoelectron yields. These are working at some level and need to be implemented in to MAUS.