MAGNET MAPPING

J. Cobb

V. Blackmore (not responsible for the content of this talk)

THE GOALS

- Find the magnetic axes of the magnets
 - Align magnetic axes of modules to beam axis
 - Ideally to better than 0.5 mm
- Check fields agree with calculated fields
 - and / or
- Find effective conductor dimensions
- Almost finished finding axes
 - Final checks still to make
- Have made first pass at as-is alignment in Hall

23 June 2015

THE SCOPE

- Initially the two Focus Coils
- Include the two Spectrometer Solenoids

- Four magnets
- Eight surveys (at least)
 - Including surveys in Hall
- All magnets & mappings subtly different
 - Not trivial not impossible to write general purpose code
- Enough meat for at least two D. Phil. theses

THE MAPPER

Seven 3-axis Hall probes at r = 0 ... 180 mm

Disc rotates

Mainly use probe 1 at r = 30 mm

THE DATA

- All four modules mapped
 - FCs in R9
 - SSU & SSD at manufacturers
- Longitudinal (z) scan at fixed angle of disc (ϕ)
 - dz = 10, 20, 40 mm
 - Change ϕ and repeat
 - $-\phi$ increments from 5, 20, 45 degrees
- A number of different currents
 - With/without VP for the SSs
- Huge amount of data
 - Much not looked at

THE ASSUMPTIONS

- Mapper mechanics are perfect:
 - Mapper disc:
 - Perpendicular to longitudinal axis of movement (z)
 - Rotates around longitudinal axis
 - Hall probes
 - z axes parallel to mapper z axis
 - x (or y) axes radial from mapper z axis
- Mapper position stable (i.e. not kicked!)

THE TRANSFORMATIONS

- Mapper measures
 - Br and $B\phi$ at (r,ϕ) in disc system
- Rotate coordinates & field components to get:
 - (x,y) and Bx, By in mapper system

Apply survey corrections to x and y

THE SURVEY CORRECTIONS

- Mapper disc doesn't move in straight line
 - Transverse movement surveyed for each module
 - < 0.6 mm for FCs
 - ~ 2 3 mm for SSU & SSD
 - Survey corrections applied to x and y coordinates
 - Not applied to field components (yet)
 - Should we?
 - Imply pitch & yaw of mapper disc?

- Considered, briefly, global fit to measured fields:
 - Models of conductors
 - Rotations
 - Global χ2
 - But too awful to contemplate for very long
 - Too many parameters
 - Too slow to calculate fields &c.
- Use model-independent method to find axis
 - No field calculations required

- Magnetic axis → Bperp = 0
- Cylindrical symmetry assumed

Maxwell-Gauss:

$$\nabla \cdot \mathbf{B} = 0$$

SO

$$\frac{\partial B_x}{\partial x} = \frac{\partial B_y}{\partial y} = -\frac{1}{2} \frac{\partial B_z}{\partial z}$$

Expect Bx and By to be linear in x or y and zero on axis

SOME FIELDS

- Same scale for Bx and Bz
 - -8(x,y) points at each z
- Information about axis mainly from where Bz changing fast

23 June 2015

- Expect Bx and By to be linear in x or y close to axis
 - zero on axis
 - Sounds simple enough
- But
 - Bx and By are small (< 1500 gauss) close to axis
 - Bz can be large (2kG 40kG)
- Allow for components of Bz in (mapper) Bx, By due to inclination – up to a few mr – of axis in mapper system

To first order, measured Bx at fixed z is

$$B_{x,m}(z_m, x_m) = k(x_m - p - \alpha z_m) + \alpha B_z$$

 α = angle of magnetic axis in x - z plane, p is intercept

Angles are small and can work in projections

Equation of x-axis in Mapper System:

$$x_0(z) = p + \alpha z$$

From previous slide

$$B_x(z,x) = k(z)x + B_0(z)$$

where

$$B_0(z) = -k(z)p - \alpha(k(z)z - B_z)$$

Fit proceeds in two steps:

- Fit B_x versus x at each z to obtain k(z) and $B_0(z)$
- Use fitted values in a fit for $B_0(z)$ to obtain p and α .

UNEXPECTED BEHAVIOUR

- Bx (By) versus x (y) for full rotation of probe 1 at two zs in FC1
 - 8 (x,y) from phi = 0, 45, 90 ... degrees
- Why loops?
 - Look at transverse field vectors, (Bx,By)

FIELD HAS A CURL?

- Transverse field vectors
 - Should converge to a point: the axis
- Measured field seems to have non-zero curl
 - Ad hoc correction...

CURL CORRECTION 1

Ampères law states

$$\oint \mathbf{B} \cdot d\mathbf{l} = 0$$

If no current enclosed

Equivalently

$$\sum B_{\phi}=0$$

Correction is

$$B_{\phi} \to B_{\phi} - \frac{1}{N} \sum B_{\phi}$$

Measured fields of each probe corrected by mean $B\phi$ at each z

CURL CORRECTION 2

Probes 1,2 & 3

Sum over 8 phi (0 – 315 degrees)

Bz

Each probe has different correction

Can amount to 70 – 80 gauss

Attributable to one axis of probe not truly radial (by ~ 1 degree)

23 June 2015

CURL CORRECTION 3

Before

After

- Seems to work
 - but needs revisiting

THE FITS AND AFTER

- Most of the fits done by VB
 - Similar to above outline
 - Different in detail
 - Include
 - Mapper surveys
 - Curl corrections
 - Have my own simple 'Poor Man's Fit'
 - Works for FCs only
 - Useful reality check
 - Residuals suggest that errors dominated by systematics
- Parallel working / checking has been very useful
 - Find mistakes (mainly mine)
 - Still work in progress
- Decide ~ Easter to make first pass to see where we are globally

SOME AXIS FIT RESIDUALS

FC1 Flip Mode

THE GLOBAL PICTURE

- Looked first pass to see how magnetic axes would line up
 - i.e. how magnetic axes relate to flanges on modules
 - In all cases mapper axis was aligned to bore tube
 - Doesn't immediately relate to flanges &c.
- Had to understand external surveys
 - Given in weird R9 coordinates for FC1 and FC2
 - FC2 re-surveyed
 - Simpler for SSD and SSU

- Axes of SSU and FC2 seemed to be within ~ 0.5 1mm of centres of flanges
- SSD axis ~ 4 mm off at upstream end; ~ 10 mm off at DS end
 - Is this right?

SSD SURVEY

SSD MAPPER SURVEY

 $\mathbf{X} - \mathbf{Z}$

+ 3mm upstream end

to -1 mm downstream

y - z

+2.5 upstream end

to -1 mm downstream

FIRST PASS AXES in HALL (as of 27/III/15)

- Assumes modules bolted exactly flange-centre to flange centre
- Assumes SS bore tubes perpendicular to flanges

HOW CAN WE CHECK SSD AXIS?

- Check what we did (obviously)
- FC bobbin axes aligned to < 100 microns to flange centres
 - Our only 'calibration'
 - Fits should be good to roughly that level
 - But some ambiguities with FC2 mapper survey
 - Work in progress
 - Shall say no more about FC2
 - FC1 looked OK but must revisit
- Invent different methods to find axis:
 - Peak finding (VB)
 - Field vectors (JC)

PEAK FINDING

- Btotal must be maximum or minimum on the axis
 - Needs fitting 2D function B(x,y) at fixed z & good relative calibration of probes

Not so useful

VECTOR PLOTS

- Draw transverse field vectors from probe positions
 - Uses all the probes independently
 - Vectors should intersect at the magnetic axis
 - Survey corrections (2 3 mm upstream end) can be applied afterwards

Result seems unambiguous & confirms fits

IN THE HALL

- Assume:
 - We trust the results of the mapping
 - Some details still to be understood
 - We understand the surveys
 - Ditto
 - We trust the surveyors
- Add the real Hall survey of modules
 - How do the axes align in real life?
 - Ambiguous as to whether FC2 survey was before or after bolting modules together

PLAN (HALL COORDINATES)

ELEVATION (HALL COORDINATES)

SUMMARY

- Simultaneous mapping of four modules is bit of a nightmare
 - All dead-reckoning / no real calibration
- Learnt ~ as much about the mapper as the modules
- As far as we can tell
 - Axis of SSD is out of spec.
- As far as I can tell
 - Modules not well-aligned in the Hall
- Haven't yet had opportunity to look at fields
 - Comparison with nominal dimensions
 - (know there's a ~1.5% discrepancy for FCs)
- TBC