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TN, Introduction

« MICE'’s stated goal: “to demonstrate that the
volume occupied by a muon beam can be reduced”

e This cannot occur with non-interacting particles
acted upon solely by electromagnetic fields

e Phase space volume 1s often characterized by
emittances

e One way the lattice impacts cooling performance 1s
via the beta function at the absorber

o I will discuss the precise meaning of these
comcepts, and how they relate to what MICE 1s
trying to accomplish
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TN, Introduction

e What we care about are beam sizes
o Luminisity
o Beam size for keeping inside apertures
e Magnets create a relationship between beam size
and phase space volume: beta function
o Limited based on magnet technology, physical
constraints, beam dynamics

e G1ven these limitations (magnet technology,...), the
only way to improve what we want (luminosity,
beam size) 1s to reduce phase space volume
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TN, Outline

e Concepts from Hamiltonian Dynamics

o Invariant quantites

o Periodic systems

o Normalization

o Canonical, kinetic, and scaled momenta
e Particle distributions

o Evolution of the distribution

o Second moment matrix

o Normalization and emittances

o Linearization

o Mismatch

o Rotational invariance
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e Directly measuring phase space density
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bt Poincaré’s Integral Invariant

e Definition of the invariant:
o Start with a closed curve 1n 2n-dimensional phase space
o Project the curve into the n coordinate-momentum
planes
o Add up the (oriented) areas in these planes

e Take all points on the curve, and evolve them
according to Hamilton’s equations of motion; the

invariant doesn’t change
e Change variables via a canonical transformation
o This changes the definitions of coordinates and
momenta, and therefore the planes
o The invariant doesn’t change
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bt Poincaré’s Integral Invariant

e Poincaré€’s integral invariant 1s the fundamental

thing we’re trying to beat with cooling
e Poincaré’s integral invariant should be vaguely
familiar
o It has a similarity to some definitions of emittances, in
terms of a phase space area
o It 1s even closer to the definition of action (as in
action-angle variables)
e Some parts of this seem a bit off
o The curve 1s completely arbitrary
o Adding the areas in the planes together
o What about phase space density?
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BROOKHRAIEN [iouville’s Theorem

e Two equivalent forms
o The integral form:
e Pick a bounded region in phase space
e Evolve every point in that region according to a Hamiltonian
e The volume of that region doesn’t change
o The differential form:
e Define a probability distribution in phase space, and choose a
point within that distribution
e Evolve the probability distribution and the point according to
the Hamiltonian
e The value of the probability distribution (i.e., the phase space
density) at that point does not change

e Liouville’s theorem follows directly from Poincaré’s
integral 1invariant (but not the reverse)
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BROOKARIEN Periodic Systems

. Definition: the Hamiltonian 1s the same at s + L as

1t 1s at s for any s
e Create an object 1in phase space as follows:
o Start at some 1nitial phase space point
o Evolve to one period later, add the point
o Continue adding points after each period
e The resulting object 1s an n-dimensional surface in
2n-dimensional phase space
o Only for stable, integrable systems
o Accelerators are close enough for this to be useful
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BROOKARIEN Periodic Systems

e Draw a closed curve on that surface
o This curve has a poincare integral invariant
o Slide the curve any way you like on the surface, the
poincare integral invariant doesn’t change
o There are n independent curves that can’t be distorted
into each other or collapsed to a point
o Value of the integral invariant for curve i 1s J;, the action

e« Summary: any particle 1n a periodic system can be
assigned » invariant action values (to the extent that
the system 1s integrable)
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e Define a transformation from “real” phase space
(X, p) to “normalized phase space (X, py)
o Transformation defined by x%v,l. + p?v,l. =2J,
o In these new variables, motion 1s on circles in each
phase space plane
e The transformation itself defines the relationship
between the invariant action and the bounds of the
motion 1n physical space
o A magnetic lattice cannot modify the action, but it can
modify the transformation
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baiaanadad Periodic Systems: Normalization 7-:}/(

e Familiar example: decoupled, linear motion.
Transformation 1s

X = \/EXN Py =(Dyn— O‘XN)/\/E

e f and «a are the Courant-Snyder lattice functions
e f relates the beam size to the oscillation amplitude
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bl Periodic Systems: Examples

"« A constant solenoid field
e A repeating lattice cell
e A ring
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o Kinetic momenta are what we know and love
Px = ym—— Eg =ymc’ E12< = |Pxl*c® + (mc?)
e With electromagnetic fields, these momenta (with
geometric coordinates and clock time) do not obey
Hamilton’s equations of motion
e Defime canonical momenta which do obey
Hamilton’s equations of motion
Pc = Pk — qA Ec = Eg —q®
e Only canonical variables have the behavior I've
described
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e In accelerators, we use longitudinal position as the
independent variable
o Coordinates are x, y, and ¢
o Momenta are p,, p,, and E

e Generally no scalar potential
« Kinetic and canonical momenta different only in the

presence of transverse vector potentials
e Transverse vector potentials rarely important:
o Edge focusing from dipole magnets
o End fields of specialized magnets (IR quads)
o Solenoids (oops...)
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BROOKHIVEN Scaled Momenta

e At fixed energy, 1t 1s convenient to scale all
momenta (and the Hamiltonian) by a reference
mometum

o Energy 1s a bit trickier. ..

o There are other conventions, such as total momentum,
longitudinal kinetic momentum, etc.

o Difficulties when energy changes

e These momenta are now, to lowest order, angles

e Can scale canonical or kinetic momenta
e This 1s the common usage 1n accelerator physics
o Beta functions (as defined above) are in m for these
variables, not for real momenta
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TN, Distributions

e Deterministic and stochastic contributions to
particle motion
e Deterministic equation for phase space coordinates
dz =,
p f(z,s)
o Stochastic: probability distribution p(x, zZ, s) such
that p(X, Z, s)dx d s is probability that
o For a particle at z
o In the interval [s, s + ds)
o Particle 1s displaced somewhere in the phase space
volume element [X, X + dX)

o Again, vectors are phase space
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TN, Distributions

e Probability distribution y(Z, s) in phase space
e Write the continuity equation for y

W % WG )G, )] =

ds
/ w(Z—X,8)p(X,Z—X,s)dx

—w(Z,s) / p(X,z,s)dx
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TN, Moments

"« Define first and second moments

i(s) = / Zw(Z.s)d3
5(s) = / [ — G)IIE — @)W (E, ) dZ

e Define an *“‘average” deterministic vector field
containing average effect of stochastics

3, 5) = (G 5)+ / % (72, 5)d3
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TN, Moments

e Use continuity equation to write equations for

moments: still exact
da

da _ / 3G, I (E,5)dZ
ds

dx _ / 7 — a()1ZGE, ) W, 5) d7
n / 8, 9)(Z — ) v, 5) d

+ / xxTp(X,Z, )w(Z,s)dxXdz
e 2 not on the right hand side (yet...)
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BROOKHMAUEN Normalization of X

. >(s) can be diagonalized by a symplectic matrix A:
2(s) = A(s)E(s)A" (s)
e I¥1s diagonal, with 2 X 2 blocks of the form
e; 0
0 €
o ¢; are “RMS” emittances
o If use scaled momenta, these are un-normalized
emittances, 1n m

o If momenta not scaled, these are normalized. Units are
eV s, scale by mc to get in m
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BROOKHMAUEN Normalization of X

e A gives a linear canonical transform from a
normalized phase space to the real phase space
o Note this 1s without reference to any underlying
Hamiltonian system
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BROOKHMAUEN Normalization of X

e Columns A,;, ; and A,,, scaled by a factor \/TL, are
the semi-axes of an ellipse
o If particles evolve according to a Hamiltonian, the
Poincaré€ integral invariant J; for this ellipse remains

constant
o For partcle k, compute the scaling factors 4/2J; . €; 1s
the average of J; , over k
 This does not mean that €, 1s constant: only one particle on
the curve; ellipse does not remain an ellipse
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. Decoupled system:

0} 0}
Y — XX Xp 62 =0 .0, — 0_2
O O pp Xp
XPp PD

| Veale o VB 0
—0,,/ A/ €0 xx \/G/Gxx_ —a/\/ﬁ 1/\/3_

o f, a are properties of the beam; earlier we wrote down
similar quantities which were properties of a periodic
lattice
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BROOKARIEN Linearized Equations

0 g(z,s) = gy(s) + J H(s)z; H symmetric for a
Hamiltonian system

‘% — JH(5)2(s) — 2(s)H (s)J

+/_)_)Tp(x S w(zZ,s)dxdz

e Equations for evolution of emittances, lattice
functions

B(s) = A‘l(s)d—zA_lT(s)

de.
ds 2 ds
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BRODKARIEN Linearized Equations

o [f Hamiltonian with no stochastics, emittances are
constant
o Need to use canonical momenta in computing second
moment matrix
e Nonlinearities in Hamiltonian:
o Other moments 1n distribution feed into second moments
o Lead to apparent emittance growth, or even reduction,
when viewed 1n terms of second moments
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e Discussed two normalizations
o Periodic lattice
o Distribution

e If these normalizations are identical, then emittance
would be invariant due to the Poincaré integral

Invariant
o If they are not 1dentical, the beam 1s mismatched.
This “effectively” increases emittances for two
broad reasons
o Effective beam size increase
o Nonlinear distortion and filamentation
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"« Assume beam distribution is ellipsoid
 Track in periodic lattice
e Matched: beam ellipse has same shape as ellipse

particles follow; ellipse boundary invariant
e Mismatch: beam ellipse different from ellipse
particles follow
o Traces out ellipse of larger area, but same shape that
particles follow
o Beam acts like 1t has a large area (emittance)

e Poor-man’s movie
 All together, filling 1n large ellipse
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bl Mismatch with Nonlinearity

"« With linear motion, ellipse remains elliptical,
emittance same

e Add nonlinearity: tune shift with amplitude
e Distribution fills 1n larger area
o Cannot easily recover from this: effective emittance
growth

e Emittance from second order moment matrix
immediately increases, even though area does not
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Rotationally Invariant Distribution

Accey,
R YA
T
Prograc®

Oxx  Oxp 0 LJ/2
s_| % O -L/2 O
0 —-L/2 o, o0
L/2 0 Cxp  Opp
C /o /(e 0 0 Vo JQe)
A . axp/\/2€0xx vVe/(2o,) —+\e/(2o,,) pr/ 2e0 .,
o 0 Vo .. /Qe) Ao /(Qe)
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€" = 0,0y, — 0,

Emittances: € + L /2
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e Same form using canonical or kinetic momenta

* 0,, and L change when transforming canonical to
kinetic momenta

e Emittances invariant for linear, Hamiltonian system
only 1n canonical coordinates

e Eigenmodes are two helicities

e A doesn’t care about angular momentum L

« v/0,,/€ behaves like the beta function; note € is not
the emittance

e Product of the emittances, e — L?/4, is identical
with kinetic or canonical momenta
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"« Emittance evolution

dlexL/2)  my ( _zeBo,,
P = B <1+ )(eiL/2)

SMS O xx
2 €

 If B, nonzero in absorber
o One equilibrium emittance worse (even nonexistent)
o Angular momentum can be generated
o 0 /€ appears
e Beta function change at absorber depends on beam
emittance at absorber
o To get “matched” beamline, need to choose an emittance
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. Alternatively, look at product of emittances:

e:=¢>— L*/4
de? m
4 10 2
4 oM e 6

 For evolution of ¢, instead of eﬁ, now a different
version of the beta function appears:
dey _ ™o SMS O
ds  Pep 2 e
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e For a solenoid lattice in the Larmor frame,
equations of motion act like a linear focusing lattice
with scaled strength [¢gB,/(2p)]?

e Using this, compute beta functions for a periodic
lattice

e For a matched beam, that beta function should be

Vo /€
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eIn4-D phase space, a second order matrix has 10

independent parameters
e In a roataionally symmetric lattice, these
correspond to 10 modes:
o Two rotationally symmetric matched helical modes
o Two rotationally symmetric beta beating modes
o 6 modes that lack rotational symmetry
e Ideally, initial particle selection should make a
distribution that 1s rotationally symmetric and
reasonably well-matched
o Matching assuming the matched distribution in the
tracker region is that for a constant solenoid
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honsasiietad Caution in Using Second Moments

e Simple example: start with Gaussian, then truncate

« Use N /e’ as measure of transverse phase space
density

e Vary how deep I cut into the Gaussian

« Plot fractional particle loss and increase in N /e?

« Can get apparent phase space density increase, with
no real cooling

e Truncation of a mere 1% will lead to apparent
MICE-level cooling performance

e Message: you need to rule out this sort of effect

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (53)



BROOKHFAEN

NATIONAL LABORATORY

O
—

0.01

P.S. Density Increase

0.001 ]
0.001 0.01 0.1

Fractional Particle Loss

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 54)



. . . S\ ) %
bl Alternative: Histogram Density 7-:}/(

e Begin with uniform distribution
e At the end, make a transform to action-angle
variables
o Based on constant solenoid field

e Create uniform sized bins in action space

e Plot histogram vs. amplitude

e If more particles 1n bin than would be there for
original uniform distribution, you’ve increased
phase space density
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Jx
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BROOKARIEN Phase Space Density
Small Emittance Large Emittance
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e Increase 1n phase space density at low amplitudes,
even for small amplitude

e Large emittance has more phase space with density
Increase

e Note tails even without stochastics
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BROOKARIEN Phase Space Density

Small, No Match Small, Match
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e Change the final linear transform to remove the tails
without stochastics.
o Not a match based on lattice: linear transform to
improve cooling measure

e Shows better cooling even with stochastics
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e The match also improves the situation for large
emittance

e Tails still remain

e Impact of nonlinearity
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e Curiously, a more restricted match appears to
perform better
 Fault of my measure of matching
e Should try correct linear match based on linear map
with absorber
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BROOKHPAEN Conclusions

« The Poincaré integral invariant, and 1ts consequence
Louiville’s theorem, give us invariants for a
Hamiltonian system that we will change with
1onization cooling

o Using the beam’s second-order matrix, we can define
emittances which characterize these quantities for a
beam
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BROOKHPAEN Conclusions

e Courant-Snyder beta functions can be defined for a
lattice or a beam.

o The functions for a beam are defined in terms of the
second moment matrix.

o The lattice determines how those functions evolve for a
beam.

o The functions for a beam are well-defined even for
non-Hamiltonian systems

o Matching refers to the process of making these two
definitions, lattice and beam, agree
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BROOKHPAEN Conclusions

e The second moment matrix 1s an imperfect
characterization of the Poincaré integral invariant
and the phase space density

o It will change due to nonlinearity

o It can change due to effects other than a change in phase
space density

o It may be more precise to look at phase space density
directly
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