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∙ MICE’s stated goal: “to demonstrate that the
volume occupied by a muon beam can be reduced”
∙ This cannot occur with non-interacting particles
acted upon solely by electromagnetic fields
∙ Phase space volume is often characterized by
emittances
∙ One way the lattice impacts cooling performance is
via the beta function at the absorber
∙ I will discuss the precise meaning of these
comcepts, and how they relate to what MICE is
trying to accomplish
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∙What we care about are beam sizes
∘ Luminisity
∘ Beam size for keeping inside apertures

∙ Magnets create a relationship between beam size
and phase space volume: beta function
∘ Limited based on magnet technology, physical
constraints, beam dynamics

∙ Given these limitations (magnet technology,. . . ), the
only way to improve what we want (luminosity,
beam size) is to reduce phase space volume
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∙ Concepts from Hamiltonian Dynamics
∘ Invariant quantites
∘ Periodic systems
∘ Normalization
∘ Canonical, kinetic, and scaled momenta

∙ Particle distributions
∘ Evolution of the distribution
∘ Second moment matrix
∘ Normalization and emittances
∘ Linearization
∘ Mismatch
∘ Rotational invariance

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (4)



Outline

Muon
 Accelerator

Program

∙ Directly measuring phase space density
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∙ Definition of the invariant:
∘ Start with a closed curve in 2n-dimensional phase space
∘ Project the curve into the n coordinate-momentum
planes
∘ Add up the (oriented) areas in these planes

∙ Take all points on the curve, and evolve them
according to Hamilton’s equations of motion; the
invariant doesn’t change
∙ Change variables via a canonical transformation
∘ This changes the definitions of coordinates and
momenta, and therefore the planes
∘ The invariant doesn’t change
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∙ Poincaré’s integral invariant is the fundamental
thing we’re trying to beat with cooling
∙ Poincaré’s integral invariant should be vaguely
familiar
∘ It has a similarity to some definitions of emittances, in
terms of a phase space area
∘ It is even closer to the definition of action (as in
action-angle variables)

∙ Some parts of this seem a bit off
∘ The curve is completely arbitrary
∘ Adding the areas in the planes together
∘ What about phase space density?

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (8)



Liouville’s Theorem

Muon
 Accelerator

Program

∙ Two equivalent forms
∘ The integral form:

∙ Pick a bounded region in phase space
∙ Evolve every point in that region according to a Hamiltonian
∙ The volume of that region doesn’t change

∘ The differential form:
∙ Define a probability distribution in phase space, and choose a
point within that distribution

∙ Evolve the probability distribution and the point according to
the Hamiltonian

∙ The value of the probability distribution (i.e., the phase space
density) at that point does not change

∙ Liouville’s theorem follows directly from Poincaré’s
integral invariant (but not the reverse)
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∙ Definition: the Hamiltonian is the same at s + L as
it is at s for any s
∙ Create an object in phase space as follows:
∘ Start at some initial phase space point
∘ Evolve to one period later, add the point
∘ Continue adding points after each period

∙ The resulting object is an n-dimensional surface in
2n-dimensional phase space
∘ Only for stable, integrable systems
∘ Accelerators are close enough for this to be useful
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∙ Draw a closed curve on that surface
∘ This curve has a poincare integral invariant
∘ Slide the curve any way you like on the surface, the
poincare integral invariant doesn’t change
∘ There are n independent curves that can’t be distorted
into each other or collapsed to a point
∘ Value of the integral invariant for curve i is Ji, the action

∙ Summary: any particle in a periodic system can be
assigned n invariant action values (to the extent that
the system is integrable)
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∙ Define a transformation from “real” phase space
(x⃗, p⃗) to “normalized phase space (x⃗N , p⃗N)
∘ Transformation defined by x2N,i + p

2
N,i = 2Ji

∘ In these new variables, motion is on circles in each
phase space plane

∙ The transformation itself defines the relationship
between the invariant action and the bounds of the
motion in physical space
∘ A magnetic lattice cannot modify the action, but it can
modify the transformation
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∙ Familiar example: decoupled, linear motion.
Transformation is

x =
√

�xN px = (px,N − �xN)∕
√

�
∙ � and � are the Courant-Snyder lattice functions
∙ � relates the beam size to the oscillation amplitude
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∙ A constant solenoid field
∙ A repeating lattice cell
∙ A ring
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∙ Kinetic momenta are what we know and love
p⃗K = 
m

dx⃗
dt

EK = 
mc2 E2
K = |p⃗K|

2c2 + (mc2)2

∙With electromagnetic fields, these momenta (with
geometric coordinates and clock time) do not obey
Hamilton’s equations of motion
∙ Defime canonical momenta which do obey
Hamilton’s equations of motion

p⃗C = p⃗K − qA⃗ EC = EK − qΦ
∙ Only canonical variables have the behavior I’ve
described
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∙ In accelerators, we use longitudinal position as the
independent variable
∘ Coordinates are x, y, and t
∘ Momenta are px, py, and E

∙ Generally no scalar potential
∙ Kinetic and canonical momenta different only in the
presence of transverse vector potentials
∙ Transverse vector potentials rarely important:
∘ Edge focusing from dipole magnets
∘ End fields of specialized magnets (IR quads)
∘ Solenoids (oops. . . )
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∙ At fixed energy, it is convenient to scale all
momenta (and the Hamiltonian) by a reference
mometum
∘ Energy is a bit trickier. . .
∘ There are other conventions, such as total momentum,
longitudinal kinetic momentum, etc.
∘ Difficulties when energy changes

∙ These momenta are now, to lowest order, angles
∙ Can scale canonical or kinetic momenta
∙ This is the common usage in accelerator physics
∘ Beta functions (as defined above) are in m for these
variables, not for real momenta
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∙ Deterministic and stochastic contributions to
particle motion
∙ Deterministic equation for phase space coordinates

dz⃗
ds
= f⃗ (z⃗, s)

∙ Stochastic: probability distribution �(x⃗, z⃗, s) such
that �(x⃗, z⃗, s)dx⃗ ds is probability that
∘ For a particle at z⃗
∘ In the interval [s, s + ds)
∘ Particle is displaced somewhere in the phase space
volume element [x⃗, x⃗ + dx⃗)
∘ Again, vectors are phase space
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∙ Probability distribution  (z⃗, s) in phase space
∙Write the continuity equation for  
) 
)s
+ ∇⃗ ⋅ [ (z⃗, s)f⃗ (z⃗, s)] =

∫  (z⃗ − x⃗, s)�(x⃗, z⃗ − x⃗, s)dx⃗

−  (z⃗, s)∫ �(x⃗, z⃗, s)dx⃗
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∙ Define first and second moments
a⃗(s) = ∫ z⃗  (z⃗, s) dz⃗

Σ(s) = ∫ [z⃗ − a⃗(s)][z⃗ − a⃗(s)]T (z⃗, s) dz⃗

∙ Define an “average” deterministic vector field
containing average effect of stochastics

g⃗(z⃗, s) = f⃗ (z⃗, s) + ∫ x⃗ �(x⃗, z⃗, s) dx⃗
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∙ Use continuity equation to write equations for
moments: still exact

da⃗
ds
= ∫ g⃗(z⃗, s) (z⃗, s) dz⃗

dΣ
ds

= ∫ [z⃗ − a⃗(s)]g⃗(z⃗, s)T (z⃗, s) dz⃗

+ ∫ g⃗(z⃗, s)[z⃗ − a⃗(s)]T (z⃗, s) dz⃗

+ ∫ x⃗x⃗T�(x⃗, z⃗, s) (z⃗, s) dx⃗ dz⃗

∙ Σ not on the right hand side (yet. . . )
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∙ Σ(s) can be diagonalized by a symplectic matrix A:
Σ(s) = A(s)E(s)AT (s)

∙ E is diagonal, with 2 × 2 blocks of the form
[

�i 0
0 �i

]

∘ �i are “RMS” emittances
∘ If use scaled momenta, these are un-normalized
emittances, in m
∘ If momenta not scaled, these are normalized. Units are
eV s, scale by mc to get in m
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∙ A gives a linear canonical transform from a
normalized phase space to the real phase space
∘ Note this is without reference to any underlying
Hamiltonian system
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∙ Columns A2i−1 and A2i, scaled by a factor
√

2Ji, are
the semi-axes of an ellipse
∘ If particles evolve according to a Hamiltonian, the
Poincaré integral invariant Ji for this ellipse remains
constant
∘ For partcle k, compute the scaling factors

√

2Ji,k. �i is
the average of Ji,k over k
∙ This does not mean that �i is constant: only one particle on
the curve; ellipse does not remain an ellipse
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∙ Decoupled system:

Σ =
[

�xx �xp
�xp �pp

]

�2 = �xx�pp − �2xp

A =

[

√

�xx∕� 0
−�xp∕

√

��xx
√

�∕�xx

]

=

[

√

� 0
−�∕

√

� 1∕
√

�

]

∘ �, � are properties of the beam; earlier we wrote down
similar quantities which were properties of a periodic
lattice
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∙ g⃗(z⃗, s) = g⃗0(s) + JH(s)z⃗;H symmetric for a
Hamiltonian system
dΣ
ds

= JH(s)Σ(s) − Σ(s)HT (s)J

+ ∫ x⃗x⃗T�(x⃗, z⃗, s) (z⃗, s) dx⃗ dz⃗

∙ Equations for evolution of emittances, lattice
functions

B(s) = A−1(s)dΣ
ds
A−1T (s)

d�i
ds

= 1
2
Tr Bii

dA
ds

= −AJC(B, �⃗, �⃗)
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∙ If Hamiltonian with no stochastics, emittances are
constant
∘ Need to use canonical momenta in computing second
moment matrix

∙ Nonlinearities in Hamiltonian:
∘ Other moments in distribution feed into second moments
∘ Lead to apparent emittance growth, or even reduction,
when viewed in terms of second moments
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∙ Discussed two normalizations
∘ Periodic lattice
∘ Distribution

∙ If these normalizations are identical, then emittance
would be invariant due to the Poincaré integral
invariant
∙ If they are not identical, the beam is mismatched.
This “effectively” increases emittances for two
broad reasons
∘ Effective beam size increase
∘ Nonlinear distortion and filamentation
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∙ Assume beam distribution is ellipsoid
∙ Track in periodic lattice
∙ Matched: beam ellipse has same shape as ellipse
particles follow; ellipse boundary invariant
∙ Mismatch: beam ellipse different from ellipse
particles follow
∘ Traces out ellipse of larger area, but same shape that
particles follow
∘ Beam acts like it has a large area (emittance)

∙ Poor-man’s movie
∙ All together, filling in large ellipse
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∙With linear motion, ellipse remains elliptical,
emittance same
∙ Add nonlinearity: tune shift with amplitude
∙ Distribution fills in larger area
∘ Cannot easily recover from this: effective emittance
growth

∙ Emittance from second order moment matrix
immediately increases, even though area does not

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (41)



Mismatch with Nonlinearity Muon
 Accelerator

Program

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

M
om

en
tu

m

Coordinate
June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (42)



Mismatch with Nonlinearity Muon
 Accelerator

Program

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

M
om

en
tu

m

Coordinate
June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (43)



Mismatch with Nonlinearity Muon
 Accelerator

Program

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

M
om

en
tu

m

Coordinate
June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (44)



Mismatch with Nonlinearity Muon
 Accelerator

Program

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

M
om

en
tu

m

Coordinate
June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (45)



Mismatch with Nonlinearity Muon
 Accelerator

Program

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

M
om

en
tu

m

Coordinate
June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (46)



Rotationally Invariant Distribution Muon
 Accelerator

Program

Σ =

⎡

⎢

⎢

⎢

⎢

⎣

�xx �xp 0 L∕2
�xp �pp −L∕2 0
0 −L∕2 �xx �xp
L∕2 0 �xp �pp

⎤

⎥

⎥

⎥

⎥

⎦

A =

[ √

�xx∕(2�) 0 0
√

�xx∕(2�)
�xp∕

√

2��xx
√

�∕(2�xx) −
√

�∕(2�xx) �xp∕
√

2��xx
0

√

�xx∕(2�)
√

�xx∕(2�) 0
−
√

�∕(2�xx) �xp∕
√

2��xx �xp∕
√

2��xx
√

�∕(2�xx)

]

�2 = �xx�pp − �2xp
Emittances: � ± L∕2
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∙ Same form using canonical or kinetic momenta
∙ �pp and L change when transforming canonical to
kinetic momenta
∙ Emittances invariant for linear, Hamiltonian system
only in canonical coordinates
∙ Eigenmodes are two helicities
∙ A doesn’t care about angular momentum L
∙
√

�xx∕� behaves like the beta function; note � is not
the emittance
∙ Product of the emittances, �2 − L2∕4, is identical
with kinetic or canonical momenta
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∙ Emittance evolution
d(� ± L∕2)

ds
= −

m10
�cp

(

1 ∓
zeBs
2
�xx
�

)

(� ± L∕2)

+
SMS

2
�xx
�

∙ If Bs nonzero in absorber
∘ One equilibrium emittance worse (even nonexistent)
∘ Angular momentum can be generated
∘ �xx∕� appears

∙ Beta function change at absorber depends on beam
emittance at absorber
∘ To get “matched” beamline, need to choose an emittance
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∙ Alternatively, look at product of emittances:
�24 = �

2 − L2∕4
d�24
ds

= −2
m10
�cp

�24 + SMS�xx

∙ For evolution of �4 instead of �24, now a different
version of the beta function appears:

d�4
ds

= −
m10
�cp

�4 +
SMS

2
�xx
�4
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∙ For a solenoid lattice in the Larmor frame,
equations of motion act like a linear focusing lattice
with scaled strength [qBs∕(2p)]2
∙ Using this, compute beta functions for a periodic
lattice
∙ For a matched beam, that beta function should be
√

�xx∕�
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∙ In 4-D phase space, a second order matrix has 10
independent parameters
∙ In a roataionally symmetric lattice, these
correspond to 10 modes:
∘ Two rotationally symmetric matched helical modes
∘ Two rotationally symmetric beta beating modes
∘ 6 modes that lack rotational symmetry

∙ Ideally, initial particle selection should make a
distribution that is rotationally symmetric and
reasonably well-matched
∘ Matching assuming the matched distribution in the
tracker region is that for a constant solenoid
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∙ Simple example: start with Gaussian, then truncate
∙ UseN∕�2 as measure of transverse phase space
density
∙ Vary how deep I cut into the Gaussian
∙ Plot fractional particle loss and increase inN∕�2
∙ Can get apparent phase space density increase, with
no real cooling
∙ Truncation of a mere 1% will lead to apparent
MICE-level cooling performance
∙ Message: you need to rule out this sort of effect
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∙ Begin with uniform distribution
∙ At the end, make a transform to action-angle
variables
∘ Based on constant solenoid field

∙ Create uniform sized bins in action space
∙ Plot histogram vs. amplitude
∙ If more particles in bin than would be there for
original uniform distribution, you’ve increased
phase space density
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Jx

Jy
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∙ Increase in phase space density at low amplitudes,
even for small amplitude
∙ Large emittance has more phase space with density
increase
∙ Note tails even without stochastics
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∙ Change the final linear transform to remove the tails
without stochastics.
∘ Not a match based on lattice: linear transform to
improve cooling measure

∙ Shows better cooling even with stochastics
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∙ The match also improves the situation for large
emittance
∙ Tails still remain
∙ Impact of nonlinearity
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Large, Beta Only
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∙ Curiously, a more restricted match appears to
perform better
∙ Fault of my measure of matching
∙ Should try correct linear match based on linear map
with absorber

June 24, 2015 J. S. Berg — Statistical Quantities, Definition of Terms — MICE CM42 (60)



Conclusions
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∙ The Poincaré integral invariant, and its consequence
Louiville’s theorem, give us invariants for a
Hamiltonian system that we will change with
ionization cooling
∘ Using the beam’s second-order matrix, we can define
emittances which characterize these quantities for a
beam
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Conclusions
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∙ Courant-Snyder beta functions can be defined for a
lattice or a beam.
∘ The functions for a beam are defined in terms of the
second moment matrix.
∘ The lattice determines how those functions evolve for a
beam.
∘ The functions for a beam are well-defined even for
non-Hamiltonian systems
∘ Matching refers to the process of making these two
definitions, lattice and beam, agree
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Conclusions
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∙ The second moment matrix is an imperfect
characterization of the Poincaré integral invariant
and the phase space density
∘ It will change due to nonlinearity
∘ It can change due to effects other than a change in phase
space density
∘ It may be more precise to look at phase space density
directly
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