

Operated by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Final Cooling For a High-Luminosity High-Energy Lepton Collider Super wedgies!

David Neuffer FNAL Don Summers, T. Hart, ... U. Miss.

Outline

- Motivation-IPAC15
- Final Cooling for a Collider & Simulation

- R. Palmer & H. Sayed

Final scenario variations

- w /D. Summers & T. Hart
- emittance exchange

Towards multi-TeV lepton colliders

Parameter	Unit	Higgs factory	3 TeV design	6 TeV design
Beam energy	TeV	0.063	1.5	3.0
Number of IPs		1	2	2
Circumference	m	300	2767	6302
β*	cm	2.5	1	1
Tune x/y		5.16/4.56	20.13/22.22	38.23/40.14
Compaction		0.08	-2.88E-4	-1.22E-3
Emittance (Norm.)	mm∙mrad	300	25	25
Momentum spread	%	0.003	0.1	0.1
Bunch length	cm	5	1	1
H. electrons/bunch	10 ¹²	2	2	2
Repetition rate	Hz	30	15	Neuffer 15
Average luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.005	4.5	7.1

Final cooling baseline

- Baseline Final Cooling
 - solenoids, $B \rightarrow 30--50T$
 - H₂ absorbers,
 - Low momentum
 - $ε_{t,N}$: 3.0 →0.3 × 10⁻⁴ m
 - ε_L : 1.0→70mm
 - expensive emittance exchange

$$\varepsilon_{N,eq} \cong \frac{\beta_t E_s^2}{2\beta m c^2 L_R (dE/ds)}$$
$$\beta_t \cong \frac{2P_\ell (GeV/c)}{0.3B}$$

Detailed simulation of final cooling

(H. Sayed et al. IPAC14)

- G4Beamline simulation of final cooling scenario
 - System is ~135m long
 - ε_{t,N} : 3.0 →0.5 10⁻⁴ m
 - ε_L : 1.0→75mm
 - P_I :135 → 70 MeV/c
 - B: **25 → 32** T; 325**→** 20MHz
 - not quite specs
 - Transmission ~ 50%
- Predominantly ε_{t,N} / ε_L
 emittance exchange

Variant Approaches

- Keep P_l, B, E', f_{rf} within ~current technology
 - P > 100MeV/c; B~8→15T; f_{rf} > ~100MHz
 - round to flat transformation
 - beam slicing and recombination

Explicitly use emittance exchange in final cooling
 – thick wedge energy loss

Variant: "thick" wedge transform

- Use wedge to increase δp/p
 - increase ε_L , decrease ε_x
- If δp/p introduced by wedge
 > δp/p_{beam};
 - can get large emittance exchange
 - exchanges x with δp (Mucool 003)
 - also in CERN 99-13, p.30
- Example:
 - 100 MeV/c; δp=0.5MeV/c
 - $\varepsilon_{\perp} = 10^{-4}$ m, $\beta_0 = 1.2$ cm
 - Be wedge 0.6cm, 140° wedge
 - obtain factor of ~5 exchange
 - ε_x →0.2 × 10⁻⁴m; δp=2.5 MeV/c
- Much simpler than equivalent
- 7 final cooling section

Beam ellipses in energy-spread increase mode (anti-wedge) Beam Ellipses

Wedge theory (MuCool-003)

• Dispersion + wedge is product of two matrices

$$\mathbf{M}_{\delta} = \begin{bmatrix} 1 & 0 \\ -\delta' & 1 \end{bmatrix} \qquad \qquad \mathbf{M}_{\eta} = \begin{bmatrix} 1 & \eta_0 \\ 0 & 1 \end{bmatrix}$$

- $\delta' = dp/ds 2 \tan[\theta/2]/p$
- variables are $[x, \delta]$, where $\delta = dp/p$
- transport through wedge is transport of $[x, \delta]$ phase space ellipse, initially

$$g_0 x^2 + b_0 \delta^2 = \sigma_0 \delta_0$$

• becoming

$$g_1 x^2 + 2a_1 x \delta + b_1 \delta^2 = \sigma_0 \delta_0$$

8

Results of wedge

new coefficients

$$b_{1} = b_{0} + (\eta_{0})^{2} g_{0}$$

$$a_{1} = \delta' b_{0} - \eta_{0} (1 - \delta' \eta_{0}) g_{0}$$

$$g_{1} = \delta'^{2} b_{0} + (1 - \delta' \eta_{0})^{2} g_{0}$$

$$\beta_{1} = m_{11}^{2} \beta_{0} + 2m_{11}m_{12}\alpha_{0} + m_{12}^{2} \gamma_{0}$$

$$\alpha_{1} = -m_{11}m_{21}\beta_{0} + (m_{11}m_{22} + m_{12}m_{21})\alpha_{0} - m_{12}m_{22}\gamma_{0}$$

$$\gamma_{1} = m_{21}^{2} \beta_{0} + 2m_{21}m_{22}\alpha_{0} + m_{22}^{2} \gamma_{0}$$

- new energy width $(\varepsilon_{L,1} = \varepsilon_{L,0} (\delta_1 / \delta_0))$ $\delta_1 = \sqrt{g_1 \sigma_0 \delta_0} = \delta_0 \left[(1 - \eta_0 \delta')^2 + \frac{{\delta'}^2 {\sigma_0}^2}{{\delta_0}^2} \right]^{1/2}$
- new transverse emittance ($\varepsilon_{x,1} = \varepsilon_{x,0} \left(\delta_0 / \delta_1 \right)$) $\varepsilon_{x,1} = \sqrt{g_1 \sigma_0 \delta_0} = \varepsilon_{x,0} \left[(1 - \eta_0 \delta')^2 + \frac{{\delta'}^2 {\sigma_0}^2}{{\delta_0}^2} \right]^{-1/2}$ new β_x , η

$$\eta_{1} = -\frac{a_{1}}{g_{1}} = \frac{\eta_{0}(1 - \eta_{0}\delta') - \delta'\frac{\sigma_{0}^{2}}{\delta_{0}^{2}}}{(1 - \eta_{0}\delta')^{2} + {\delta'}^{2}\frac{\sigma_{0}^{2}}{\delta_{0}^{2}}} \qquad \qquad \beta_{1} = \beta_{0} \left[(1 - \eta_{0}\delta')^{2} + \frac{{\delta'}^{2}\sigma_{0}^{2}}{\delta_{0}^{2}} \right]^{-1/2}$$

D. Neuffer

🛠 Fermilab

Evaluation of Super-wedge examples

- Set reference momentum at 100 MeV/c
 - $\epsilon_x, \epsilon_y \rightarrow 10^{-4} \text{ m}$
 - $-\beta_x = \beta_y = \sim 1 \text{ cm}$
 - ~1mm beam
 - round numbers ...
- Need small δp/p
 - δp ~0.5 MeV/c
 - obtain by lengthening and flattening bunch ($\epsilon_L = \sim 0.001$ m)
- Need dense low-Z wedge
 - − Be (ρ =1.86) → Diamond
 - (p=3.6 C)
 - dp/ds =15.1 MeV/c /cm

- Evaluate in ICOOL
 - wedge and beam definition, match
 - emitcalc evaluates eigen emittances before/after
 - a few cm transport

Numerical examples

Wedge parameters

Z(cm)	P _z	ε _x (μ)	ε _y	ε _L (mm	σ _E MeV	6-D ε increase	Pz vs. x Pz vs. x 0.11 Entries 999 0.01 Mean x 8.186e-006 Mean x 0.0241 0.105 RMS x 0.00163 RMS y 0.004339 0.1 Provide the second sec
0	100	97	95.5	1.27	0.46	1.0	0.095
0.4	96.4	33.4	96.3	4.55	1.64	1.24	0.085
0.8	92.4	22.7	96.5	8.94	3.22	1.65	

- reduces ε_x by factor of 4.3, ε_L increases by factor of 7.0
 - first half of wedge more efficient than second half ...
- Second wedge ?
 - if matched to same optics ($P_z \rightarrow 100 \text{ MeV/c}, \sigma_E \rightarrow 0.46 \text{ MeV}$)
 - $\epsilon_x: 23 \rightarrow 27\mu; \epsilon_y: 97 \rightarrow 23 \mu$

w

Parameter variations...

- Go to larger initial beams, larger wedge
 - β_t =2.6cm, ϵ_t =130 μ
 - Diamond, w=3.0mm, θ = 85° (5.6mm thick at center)

🛟 Fermilab

Parameter variations...

- Go to larger initial beams, larger wedge
 - β_t =3.2cm, ϵ_t =200 μ
 - Graphite, w=4.5mm, θ = 100° (9.6mm thick at center)

Pz - x plots

Parameter variations...

- Go to larger initial beams, larger wedge
 - β_t =3.6cm, ϵ_t =200 μ
 - Be, w=5mm, θ = 110° (14.3 mm thick at center)

‡Fermilab

Compare with current final scenario

- last 120 m
 14 30 T SOLENOIDS
 ~1GeV rf
 - ε_{t,N} : 180 → 55 10⁻⁶ m
 - − ε_L: 2.0→75mm
 B: 25 → 32 T; 325→ 20MHz
 - not quite specs
 - Transmission ~ 50%
- Two Be wedges ~ 3cm
 - ε_{t,N} : 200 →40 10⁻⁶ m
 - $\epsilon_L : 1 \rightarrow 50 mm$
 - Transmission ~ 95+%
 - ~30 MeV rf

🛠 Fermilab

Parameters closer to MICE

- Go to larger initial beams, larger wedge, higher P
 - β_t =5cm, ϵ_t =272 μ
 - C, w=5mm, θ = 105° (14.3 mm thick at center)

Need to complete scenario

- Match into first wedge
 - long ~0.15m, δp = 0.5MeV/c
 - $-\beta_t \sim 3$ cm $\epsilon_t \sim 200\mu$
 - beam out has dispersion η ~4cm, δp ~3 MeV/c, β_x ~0.5cm
- Biggest problem could be optical match out of wedge
 - Beam has small xemittance
 - dispersion + smaller β_x
 - larger δp

- Match into second wedge
 - Accelerate centroid to 100(?) MeV/c
 - long ~1m, $\delta p = 0.5 MeV/c$
 - $-\beta_t \sim 3$ cm $\epsilon_1 \sim 200\mu$, $\epsilon_2 \sim 40\mu$
 - Dispersion match to ~0

• Similar to PIC match?

Disadvantages

- exchange per wedge limited to ~4-6 x (?)
- Does not cool
 - beam heating by >~25%; more for larger exchange
- Optics matching is nontrivial

Summary

- Thick Wedge parameters are so attractive it has to be part of final cooling scenario
 - Details depend on actual implementation values and matching solutions
 - how many passes possible $2 \rightarrow 3 \rightarrow 4$?
 - how much longitudinal emittance increase is tolerable?
- Not optimized (100MeV/c \rightarrow ???)
- Could we do an experiment at MICE ??
 - cm-scale dense large-angle wedge, small δE initial beam

Telewedgie...

