

Plans for delivery and commission the RF system

K Ronald, University of Strathclyde For the MICE RF team

Content

- The RF System has several Key subsystems which have been addressed in other talks
 - RF Cavities and Cavity Modules
 - Progress on the tests at the MTA discussed in the second paper
 - Cavity modules addressed in third paper
 - RF drive and distribution system
 - Plans for test, delivery and installation of amplifiers will be addressed here
 - Encompasses development of remote control (2nd talk) and LLRF control (final talk)
 - Cavity tests at RAL
 - Opportunity for a full system test
 - Commission all major components before assembly in beam line
 - Muon-RF phase determination
 - If time permits

- MICE HPRF system requirements have changed
 - Fewer cavities, no coupling coil
 - Required operational date on the beamline is Summer 2017
 - Requires early commissioning of the hardware: Starting Aug 2016
 - Enables demonstration of ionisation cooling with re-acceleration
 - First results complete before end US fiscal year 2017
- It is relevant to review the timeframe and resources required to deliver this system

MICE High Power RF drive systems: Commissioning

- 2MW peak output from RF drive amplifiers, are unchanged
 - First triode amplifier proven and installed at RAL
 - First tetrode amplifier also proven with pulsed power modulators
 - These are now back at Daresbury
- Commissioning System No. 2
 - Recommissioning of tetrode pre-amplifier no. 1 underway at DL
 - Operated at 100kW in the past two weeks
 - This will be used to commission triode No. 2 with first modulators
 - Mechanically refurbished triode no 2 is now installed in test facility
 - Requires electrical work to finish
 - Tetrode No. 1 will be replaced by tetrode no 2 by end of year
 - Tetrode no 2 also primarily requires electrical completion
 - Remote control system no. 1 will be implemented in control rack by end of year
 - 2nd Triode and Tetrode amplifiers operating with 1st control rack and modulators by end
 2015
 - 2nd Triode and Tetrode Amplifiers operating with 2nd modulators and control rack by end
 Summer 2016

MICE High Power RF systems: Tim Stanley

Triode No. 1 at RAL

Triode No. 2 Completed Mechanical Refurb at Daresbury

Tetrode No. 1 Re-commissioned at Daresbury Lab

MICE CM42: RF Drive Summary 24th June 2015

MICE High Power RF drive systems: Installation and Test

Amplifier System No. 1

- First triode remains installed at RAL
- Reinstall Tetrode No.1 with Modulators No.1 and control racks No. 1 Spring- Aug '16
 - Build on previous installation for TIARA tests
 - Note there may be some conflict with key people required for installation at RAL and commissioning at DL
 - Will require mechanical modification to the Mezzanine
- Prove with 1 Month of test operation into resistive loads

Amplifier System No. 2

- Project completion of Daresbury proving trials by Summer' 2016
- Installation can commence from July '16 to Jan '17 (preliminaries need not await July '16)
 - Build on experience from installation of system No. 1
 - Will require new wiring 'loom' installation, additional cooling water panel and mechanical modification to the Mezzanine
- Prove with 1 Month of test operation into resistive loads

Cavities: Pre-Installation

- Cavity Module No. 1: Arrival and Installation
 - Assumed to arrive under purge and fully assembled May '16
 - Assume cavity will not require any further baking
 - In advance, auxiliary systems will be prepared in MICE hall
 - Clean room: Essential in case any intervention is required
 - Independent cooling loop for each cavity with tight thermal regulation
 - LLRF tests to verify safe transport and arrival
 - Install cavity next to shield wall opposite U/S SS, special distribution network
 - Install vacuum pumps and pump cavity ready for operation late Jun 2016 (1-2 months)

Cavity Module No. 2: Arrival and Installation

 Assumed to follow same pattern as Cavity module No. 1 with object of completion at Oct 2016

Cavities: Pre-Commissioning

Pre-requisities

- RF system No.1 with full remote controls is expected to be available in July 2016
- Cavity No 1 expected available by June 2016
- LLRF tuner control and RF closed loop control system expected by Summer 2016
- Installation of RF power feeds to the test point (shield wall opp. U/S SS)

HPRF Tests of Cavity No. 1

- Initial tests on a single cavity, using drive system No. 1
- Aug '16- Oct '16, est 2 months for complete tests

HPRF Tests of Cavity No. 2

- Oct '16- Dec '16 using drive system No. 1
- Leave in situ until last possible moment
- Opportunistically test with drive system no. 2 if timing is good

LLRF Drive and Cavity Control System: Andy Moss

Cavities: Installation

Pre-requisities

- Completion of tests on two cavities with RF amplifier No. 1
 - Ideally also pre-commissioning tests with Amplifier No. 2 and Cavity No. 2
- After tests cavities left under purge N₂ gas
- Removal of the STEP IV yoke and completion of the absorber, spool pieces
- Build of floor plates, mechanical integration components
- Installation of final RF distribution network (planned for Aug '16- Feb '17)

Procedure

- Cavities should be left under purge until the last possible moment.
- Absorber and spool sections 'beam line vessel' should be pumped separately and left under purge
- When final installation is imminent, the 'beam line vessel' cavity gap be opened and the apertures blocked with thin plates
- When ready, the end plates of the cavity modules should be removed, replaced with thin plates for installation
 - Cavities immediately installed in the beam line vessel
 - Immediately 'rough pumped', then HV pumped
- Starting by Feb '17 and planned complete early March 2017, validate with LLRF measurements

RF network: Alan Grant

- Simplified distribution network- feasible to route overhead
- Off-centre mounting of hybrid takes up phase shift
- Orientation of load arbitrary- align with the 6" distribution line and share mountings

RF network

Cavities: Commissioning

Commissioning without B field

- Cavities should be HPRF tested on beam line before yoke is complete
 - In case any intervention is required
- Estimate <1 month operation of both cavities together, so completion by April 2017

Commissioning with B field

- Requires completion of Yoke and re-commissioning of all magnets
 - Note ONE magnet only will be added to the STEP IV set
 - Yoke plate final installation est ~ 1 wk
 - Commissioning of magnets will benefit from the STEP IV plan
 - Outlined by Jaroslaw yesterday
 - Tests of the cavities with magnetic field and all systems April 2017, say 2wks-1mnth
 - In parallel with magnet commissioning if possible

RF network

- Load on each splitter to absorb unbalanced reflections
- Retracted crane hook clears coax over the wall.
- Support from present 'shield wall' and yoke supports

 With 2 RF amplifiers now relatively straightforward to place auxiliary systems (cooling)

Water cooling for load will need to route over the air gap on the

MICE CM42: RF Drive Summary 24th June 2015

RF Phase determination: Alex Dick

- Need to be able to select particles for analysis by their RF transit phase
 - Allows the 'bundling' of particles for coherent analysis
 - i.e. As if we are considering the interactions of a real particle 'bunch'
- Particle transit time determined by ToF detectors- used in difference measurements
 - ToF resolution ~50ps
 - Time is not directly referenced to external clock
 - Closest ToF is ~2.5m upstream of 1st cavity
- Cavity transit time inferred by the ToF transit time and the tracker measurement of momentum
 - Tracker resolution, $p_z \sim 200 \text{MeV/c}$ is $\Delta p_z \sim +/-1.3 \text{MeV/c}$
 - For 2.5m gap transit delay is ~9.6ns +/- 15ps
 - Combining ToF resolution and Momentum projection resolution ~ +/- 52ps
 - Desire to know RF phase to better than 0.3 of this ~ 20ps

Demonstration of subsample approach

- Traces of cavity fill from MTA tests
- Test viability of subsampling the AC waveform- suppress data management by orders of magnitude
- Reconstructing signal in Fourier domain and comparing signals (Blue is Raw, Red is DSP)

- Note suppression of DC bias
- Note DSP has effective filtered the signal
- Suppressing noise and instrument artefacts

 Zero crossing offsets between Raw and DSP?

Range from 10-75 ps

Not good enough

Filter: Suppress noise and digitiser artefact

Butterworth Filter with flat 2MHz passband at 201.25MHz

Very precise reproduction of signal

Much less variation in phase difference ~1-2ps (between original and reconstructed signals)

Difference between Original and Reconstructed signal Zero Crossings (Filtered)

Hardware: Digitisers

- Will be important to provide clock synchronisation and trigger- i.e. t=0 synchronisation for ToF TDC's and RF instruments
 - t=0 can be defined by an external trigger to zero all timebases
 - Just before accelerating gradient reaches maximum

OR

- Just before start of RF pulse
- Use a pulse generator to provide 40MHz clock, and provide trigger by logical AND between clock and trigger pulse- should sync start of timebases
- CAEN V1761 have external clock drive for acquisition rate
 - 10 bit rather than 8 bit units currently recording MTA data
 - Facilitate interfacing with 40MHz clocks of TDC's (requires programming of the clock controller)
 - Need to understand trigger jitter statement?

Hardware: TDC approach

- This is currently planning to use the TDC (CAEN 1290) that are already being used to record the ToF signals
- RF signal driving discriminators, use TDC time stamps to find cavity 'zero crossings'
 - 25 ps bin size
- Same electronics enhances confidence that any drift in time accuracy will be similar
 - Unfortunately LeCroy discriminators seem problematic at 200MHz
 - Input impedance wanders with frequency, at 201.25MHz, 98+j68 Ω
 - Could be matched with L-branch network, but still doesn't fix rate problem
- RF signal amplitude and spectrum is very well known: no need for a CFD
 - Threshold trigger system is much less complex
 - Quote obtained from Phillips Scientific for updating and non-updating leading edge discriminators
 - 3ns double event resolution and 300MHz bandwidth, <30ps jitter

Summary

Drive Commissioning Timetable

- Amplifier No. 1 with automation installed and operational by Aug 2016
- Amplifier No. 2 with automation installed and operational by Feb 2017
- LLRF and cavity control systems operational by Aug 2016

Cavities

- Arrival May 2016
- Cavity no. 1 ready for standalone tests by end June 2016: Compete by Oct 2016
- Cavity No. 2 ready for standalone test by Oct 2016 : Complete by Dec 2016
- Cavity installation to beamline Mar '17
- Installation of distribution network by Feb '17
- Tests of the cavities without B-field late March /early April
- Tests of Cavities with B-field, May 2017

Muon Timing

- Subsampling techniques appears to work filtering the signal is important
 - Requires resilience analysis
 - Digitiser selection needs to be complete
- TDC technique- suitable discriminators identified
 - All other hardware in hand