## Electron-Muon Ranger (EMR) Step I Paper

François Drielsma

University of Geneva

June 23, 2015

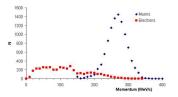


-

< A > < 3

# Structure of the EMR Step I paper

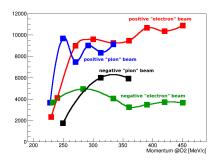
- Introduction
  - Ionization Cooling, MICE
  - Purpose of the EMR
- 2 Electron-Muon Ranger
  - Structure of the detector
- Performance in the MICE Beam
  - TOF selection and particle tagging
  - Orrection for the energy loss in TOF2 and KL
  - Oseful variables for PID
  - In Efficiency of a simple test statistic
  - Momentum reconstruction from the range


#### Conclusions

#### NB: This paper demonstrates the capability of the EMR

## 1. & 2. Electron-Muon Ranger

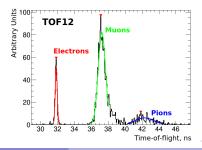
Pupose of the EMR in MICE:


- Reject the muons that decayed inside the cooling channel
- Redundant measurements of the trajectories and momenta
- The EMR is fully active scintillator tracker calorimeter
  - 48 planes of 59 triangular scintillator bars
  - Readout by multi-anode and single-anode PMTs





## 3.1. MICE beam settings and TOF selection


- One month of data taking in the MICE beam at Step I
- Array of beam settings  $(e^{\pm}, \pi^{\pm})$  with momenta ranging from 230-420 MeV/c at D2

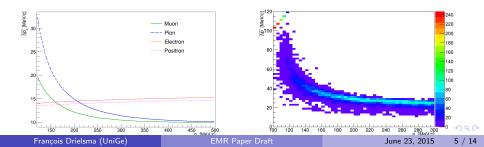


- PID from TOF dist.
- Momentum of muons from:

$$p_{\alpha} = \frac{m_{\alpha}c}{\sqrt{\left(\frac{c\text{TOF}}{\Delta z_{12}}\right)^2 - 1}} \qquad (1)$$

• For a beam with a setting of 230 MeV/c at D2:

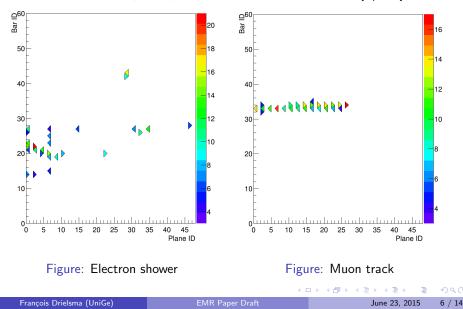



# 3.2 Energy loss before entering the EMR

## TOF2

- MIP particles lose  $\sim$ 10 MeV/c in TOF (muons with  $p_z > 2m_ic$ )
- The electrons are all ultra-relativistic ( $\beta\gamma>100$ ) and lose  $\sim 15~{\rm MeV}/c$

## KL


- MIP particles lose  $\sim$ 28±3 MeV/c in KL (muons with  $p_z > 2m_i c$ )
- The electrons are all ultra-relativistic ( $\beta\gamma > 100$ ) and will shower in the lead of KL ( $2.5X_0$ )



#### Events in the EMR

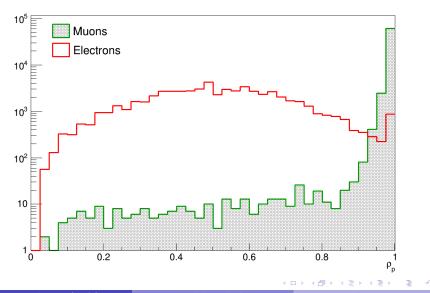
Time over Threshold [X planes]

Time over Threshold [X planes]



### 3.3 Useful variables to discriminate electrons

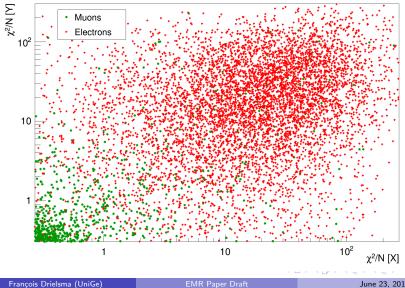
For each beam setting (i.e. momentum) and each event, we measure:


- **1** Plane **density**  $\rho_p$  (*Longitudinal*)
- $\rightarrow\,$  Measurement of the hit density in the active volume

$$\rho_p = \frac{N}{Z_x + Z_y} \tag{2}$$

**②** Spread in terms of  $\chi^2$  in the two projections (*Transversal*)  $\rightarrow$  Track / Shower spread of a particle

$$\chi^2/N = V_y (1 - \frac{V_{x,y}^2}{V_x V_y})$$
(3)


The use of these variables as a combined test statistic will prove to be a strong tool to reject electrons and tag real muons in the detector as we will see in the following sections Muon vs electron: Density (normalized)



François Drielsma (UniGe)

June 23, 2015 8 / 14

# Muon vs electron: Normalised $\chi^2$

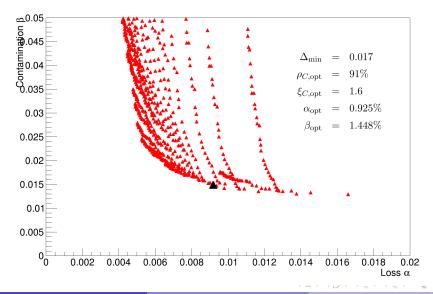


June 23, 2015 9 / 14

#### 3.4 Test statistic

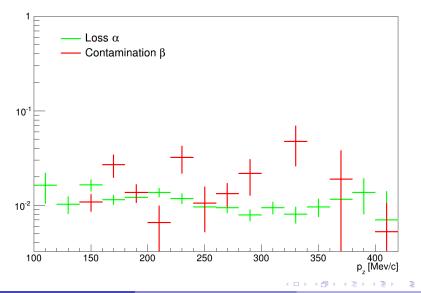
The plane density  $\rho_P$  is efficient to reject the electrons at all momenta. Even if it performs well on its own, adding a cut on  $\xi = \chi_X^2/N + \chi_Y^2/N$  improves the rejection without reducing the acceptance.

#### Hypothesis testing :


- $H_0$  is the null hypothesis, the particle X is a muon.  $H_1$  is the alternative, i.e. X is an electron.
- $\alpha = p(X \in w | H_0)$  is the **loss**, the probability that X is tagged as an electron, given that X is a muon (w the critical region)
- $\beta = p(X \in (W w)|H_1)$  is the **contamination**, the probability that X is tagged as a muon, given that X is an electron (W the space)

 $\rightarrow$  In the  $(\alpha,\beta)$  space, the best choice of cut is the one that minimizes  $\Delta=\sqrt{\alpha^2+\beta^2},$  the distance from the origin.

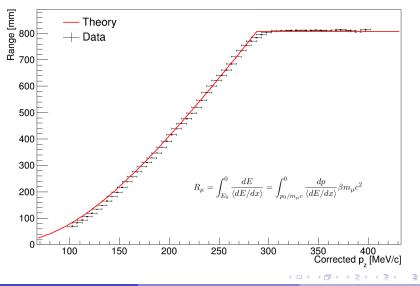
 $\rightarrow$  The real contamination is in fact  $R_e\beta$  with  $R_e$  the abundance of electrons in the beam, i.e.  $R_e = N_e/N_\mu$  (= 11.7% in the test beam)


イロト 不得 トイヨト イヨト 二日

## Optimal cut and efficiency



François Drielsma (UniGe)


### Rejection power at different momenta



François Drielsma (UniGe)

June 23, 2015 12 / 14

### 3.5 Momentum reconstruction from the range



François Drielsma (UniGe)

June 23, 2015 13 / 14

#### **EMR Paper: Status**

| Task                                                                                                               | Person                                   | Timescale             |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|
| Plots post CM42 comments                                                                                           | François Drielsma                        | < 1 week              |
| Improvements to range-momentum analysis                                                                            | Francois<br>Drielsma, (Alain<br>Blondel) | ~ 3 weeks             |
| Write up long form (MICE Note) version of new analysis                                                             | François Drielsma                        | ~ 3 weeks             |
| MICE Note → Wise People                                                                                            | François Drielsma                        | < 1 week              |
| MICE Note digested                                                                                                 | Alan Bross,<br>Ludovico Tortora          | ~ 2 weeks             |
| MICE Note comments received and implemented → return to Wise People. Publish MICE <u>Note</u> (on wiki/notes page) | FD, AB, LT                               | Iterative             |
| Paper drafted (very close)                                                                                         | François Drielsma                        | ~ 4 weeks             |
| Paper → Wise People                                                                                                | Alan Bross,<br>Ludovico Tortora          | ~ 2 weeks             |
| Comments received and acted on.                                                                                    | François Drielsma                        | Iterative             |
| Paper → Collaboration                                                                                              | François Drielsma                        | 2 * 1 week iterations |
| Paper $\rightarrow$ Publish, reviewer comments, etc.                                                               | François Drielsma                        |                       |

#### http://mice.iit.edu/micenotes/public/pdf/MICE0466/MICE0466.pdf

イロト イポト イヨト イヨト 二日